scholarly journals Aroylhydrazone Diorganotin Complexes Causes DNA Damage and Apoptotic Cell Death: From Chemical Synthesis to Biochemical Effects

2021 ◽  
Vol 22 (24) ◽  
pp. 13525
Author(s):  
Wujiu Jiang ◽  
Yuxing Tan ◽  
Yiyuan Peng

Under microwave irradiation, eighteen new aroylhydrazone diorganotin complexes (1a–9b) were produced through the reaction of aroylhydrazine, 2-ketobutyric acid, and the corresponding diorganotin. Fourier transform infrared spectroscopy, 1H, 13C, and 119Sn nuclear magnetic resonance spectroscopies, high-resolution mass spectroscopy, X-ray crystallography, and thermogravimetric analysis (TGA) were performed to characterize the complexes. The in vitro anticancer activity for complexes were assessed using a CCK-8 assay on human cancer cells of HepG2, NCI-H460, and MCF-7. Complex 4b revealed more intensive anticancer activity against MCF-7 cells than the other complexes and cisplatin. Flow cytometry analysis and transmission electron microscope observation demonstrated that complex 4b mediated cell apoptosis of MCF-7 cells and arrested cell cycle in S phase. Western blotting analysis showed that 4b induced DNA damage in MCF-7 cells and led to apoptosis by the ATM-CHK2-p53 pathway. The single cell gel electrophoreses assay results showed that 4b induced DNA damage. The DNA binding activity of 4b was studied by UV–Visible absorption spectrometry, fluorescence competitive, viscosity measurements, gel electrophoresis, and molecular docking, and the results show that 4b can be well embedded in the groove and cleave DNA.

2004 ◽  
Vol 24 (22) ◽  
pp. 9958-9967 ◽  
Author(s):  
Kevin G. McLure ◽  
Masatoshi Takagi ◽  
Michael B. Kastan

ABSTRACT DNA damage induces p53 DNA binding activity, which affects tumorigenesis, tumor responses to therapies, and the toxicities of cancer therapies (B. Vogelstein, D. Lane, and A. J. Levine, Nature 408:307-310, 2000; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Both transcriptional and transcription-independent activities of p53 contribute to DNA damage-induced cell cycle arrest, apoptosis, and aneuploidy prevention (M. B. Kastan et al., Cell 71:587-597, 1992; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Small-molecule manipulation of p53 DNA binding activity has been an elusive goal, but here we show that NAD+ binds to p53 tetramers, induces a conformational change, and modulates p53 DNA binding specificity in vitro. Niacinamide (vitamin B3) increases the rate of intracellular NAD+ synthesis, alters radiation-induced p53 DNA binding specificity, and modulates activation of a subset of p53 transcriptional targets. These effects are likely due to a direct effect of NAD+ on p53, as a molecule structurally related to part of NAD+, TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B1), inhibits intracellular p53 activity. Niacinamide and thiamine affect two p53-regulated cellular responses to ionizing radiation: rereplication and apoptosis. Thus, niacinamide and thiamine form a novel basis for the development of small molecules that affect p53 function in vivo, and these results suggest that changes in cellular energy metabolism may regulate p53.


2022 ◽  
Vol 15 (1) ◽  
pp. 92
Author(s):  
Lilianna Becan ◽  
Anna Pyra ◽  
Nina Rembiałkowska ◽  
Iwona Bryndal

Thiazolo[4,5-d]pyrimidine derivatives are considered potential therapeutic agents, particularly in the development of anticancer drugs. In this study, new 7-oxo-(2a-e), 7-chloro-(3a-e) and also three 7-amino-(4a-c) 5-trifluoromethyl-2-thioxo-thiazolo[4,5-d]pyrimidine derivatives have been synthesized and evaluated for their potential anticancer activity. These derivatives were characterized by spectroscopic methods and elemental analysis, and the single-crystal X-ray diffraction was further performed to confirm a 3D structure for compounds 2e and 4b. The antiproliferative activity evaluation of twelve new compounds was carried out on a variety of cell lines including four human cancer (A375, C32, DU145, MCF-7/WT) and two normal cell lines (CHO-K1 and HaCaT). Four of them (2b, 3b, 4b and 4c) were selected by the National Cancer Institute and evaluated for their in vitro anticancer activity using the NCI-60 screening program. 7-Chloro-3-phenyl-5-(trifluoromethyl)[1,3]thiazolo[4,5-d]pyrimidine-2(3H)-thione (3b) proved to be the most active among the newly synthesized compounds.


1999 ◽  
Vol 19 (2) ◽  
pp. 1202-1209 ◽  
Author(s):  
Lin Liu ◽  
Daniel M. Scolnick ◽  
Raymond C. Trievel ◽  
Hong Bing Zhang ◽  
Ronen Marmorstein ◽  
...  

ABSTRACT The p53 tumor suppressor protein is a sequence-specific transcription factor that modulates the response of cells to DNA damage. Recent studies suggest that full transcriptional activity of p53 requires the coactivators CREB binding protein (CBP)/p300 and PCAF. These coactivators interact with each other, and both possess intrinsic histone acetyltransferase activity. Furthermore, p300 acetylates p53 to activate its sequence-specific DNA binding activity in vitro. In this study, we demonstrate that PCAF also acetylates p53 in vitro at a lysine residue distinct from that acetylated by p300 and thereby increases p53’s ability to bind to its cognate DNA site. We have generated antibodies to acetylated p53 peptides at either of the two lysine residues that are targeted by PCAF or p300 and have demonstrated that these antibodies are highly specific for both acetylation and the particular site. Using these antibodies, we detect acetylation of these sites in vivo, and interestingly, acetylation at both sites increases in response to DNA-damaging agents. These data indicate that site-specific acetylation of p53 increases under physiological conditions that activate p53 and identify CBP/p300 and PCAF as the probable enzymes that modify p53 in vivo.


2020 ◽  
Vol 20 (14) ◽  
pp. 1704-1713
Author(s):  
Nadine Uwabagira ◽  
Balladka K. Sarojini ◽  
Ashwini Prabhu

Background: Cancer is the second leading cause of mortality worldwide. Despite several advances made in the treatment strategies, the cure for cancer remains still a challenge. Currently used treatment modalities pose several side effects and remain ineffective in the later stages. Thiazolidinediones (TZDs) have been shown to possess anti-cancer activity in several in vitro models. Objectives: The objective of this study was to assess the effect of novel synthesized thiazolidinedione derivatives on three selected cancer cell lines viz., human breast adenocarcinoma cell line (MCF-7), lung adenocarcinoma (A549) and colorectal carcinoma (HT29). This study also aimed to evaluate the anti-inflammatory and DNA binding activity of the synthesized derivatives. Methods: The synthesized thiazolidinedione derivatives were screened for their in vitro anti-cancer activity on the human breast adenocarcinoma cell line (MCF-7), lung adenocarcinoma (A549) and colorectal carcinoma (HT29) using the Methyl Thaizolyl Tetrazolium (MTT) Assay. They were also evaluated for in vitro antiinflammatory activity using albumin denaturation method, DNA binding activity and hemocompatibility. Results: Compounds 5a, 5b, 5d, 6c and 6d showed IC50 of 30.19, 41.56, 65.97, 60.16 and 50.41μM respectively on breast adenocarcinoma (MCF-7), IC50 of 49.75, 51.42, 65.43, 61.94 and 56.80μM on lung adenocarcinoma (A549) and 38.11, 45.58, 71.24, 53.15 and 51.25μM on colorectal carcinoma (HT29). In the hemolysis assay, compounds 5a and 5b were found to be nontoxic and nonhemolytic to human erythrocytes. Five compounds possessed significant anticancer and anti-inflammatory activity. Three of them are Mannich bases, whereas the remaining two are aryl acyl derivatives. Conclusion: The in vitro results (anticancer and anti-inflammatory) showed that the 4-chloro anilinomethyl substitution at third position and thiophenoethenyl at the fifth position of thiozolidinedione (5a) emerged as the most effective derivative on all the tested cancer cell lines. A higher DNA binding affinity of the test compounds was also found.


2018 ◽  
Vol 23 (2) ◽  
pp. 68
Author(s):  
Eti Nurwening Sholikhah ◽  
Jumina Jumina ◽  
Sitarina Widyarini ◽  
Ruslin Hadanu ◽  
Mustofa Mustofa

This research was conducted to evaluate the anticancer activity of new compounds of benzyl-1,10- phenanthroline derivatives and their selectivity. In vitro anticancer activity of 11 benzyl-1,10-phenanthroline derivatives were conducted on three human cancer cell lines, cervical cancer (HeLa), myeloma (NS-1), and breast cancer (MCF-7) using MTT-based cytotoxicity assay. The cytotoxicity of each compound was assessed to normal Vero cell line by the same method. The in vitro anticancer activity and cytotoxicity was expressed by the concentration inhibiting 50% of the cell growth (IC50), and the selectivity index (SI) was determined by calculating ratio of the IC50 on Vero cell line and the human cancer cell lines. The results showed that among the 11 compounds tested, the (1)-N-(4-butoxybenzyl)-1,10-phenanthrolinium bromide exhibited the best in vitro anticancer activity with an IC50 27.60 ± 2.76 µM on HeLa, 6.42 ± 5.53 µM on NS-1 and 9.44 ± 2.17 µM on MCF-7 cell lines. Its SI were 377.65 ± 39.97 on HeLa, 6158.72 ± 5306.34 on NS-1 and 1140.11 ± 261.85 on MCF-7 cell lines. This study demonstrated that (1)-N-(4-butoxybenzyl)-1,10-phenanthrolinium bromide possessed a potential in vitro anticancer activity on cancer cell lines with high selectivity


2020 ◽  
Vol 17 (12) ◽  
pp. 969-978
Author(s):  
Balakishan Vadla ◽  
Sailu Betala

A series of novel triazole functionalized pyrido [3',2':4,5] furo[3,2-d] pyrimidin-4 (3H)-one derivatives 7a-p were prepared from ethyl furo[2,3-b]pyridine-2-carboxylate 3 on reaction with ammonia to afford furo[2,3-b]pyridine-2-carboxamide 4. This compound, on reaction with triethyl orthoformate TEOF, gave compound 5. Compound 5 on propargylation, followed by a reaction with substituted aryl azides under Sharpless reaction conditions, furnished triazole tagged pyrido [3',2':4,5]furo[3,2-d] pyrimidin-4(3H)-one derivatives. All the products 7a-p were screened against four human cancer cell lines, such as HeLa - Cervical cancer (CCL-2), COLO 205- Colon cancer (CCL-222), HepG2- Liver cancer (HB-8065), and MCF7 - Breast cancer (HTB-22) and one normal cell line (HEK 293). Compounds 7b, 7n, 7o and 7p, which showed promising anticancer activity, were identified and found to be non-toxic to normal cell line. Studies for HeLa, COLO205, HepG2, and MCF-7 using CoMFA and CoMSIA were carried out . Models from 3D-QSAR provided a strong basis for future rational design of more active and selective HeLa, COLO205, HepG2, and MCF-7 cell line inhibitors.


2020 ◽  
Vol 17 (5) ◽  
pp. 563-573 ◽  
Author(s):  
Chandrakant Dhondiram Pawar ◽  
Dattatraya Navnath Pansare ◽  
Devanand Baburao Shinde

Background: Thiophene ring forms important building block in medicinal chemistry. Literature reveals that thiophene ring in combination with different groups shows different activity. By keeping these things in mind we have designed and synthesized a new series of amide and sulfonamide coupled thiophene. A series of novel substituted 3-sulfamoylbenzo[b]thiophene-4- carboxamide molecules containing sulfonamide and amide group were designed, synthesized and used for anti-proliferative activity study. Methods: The final compounds 16-36 were synthesized by using series of reactions comprising sulfonation, sulfonamide coupling, hydrolysis and peptide coupling. The yields of compounds 16- 36 are in the range of 90-98%. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, 13C NMR, LCMS and the purity was checked through HPLC analysis. The compounds were further tested for their in vitro anticancer activity against a series of cell lines A549, HeLa, MCF-7 and Du-145. Results: The intermediates 8-13, 15 and final compounds 16-36 were synthesized in good yields. The synthesized compounds were further tested for their anticancer activity and most of compounds showed moderate to good anticancer activity against all four cell lines. Conclusion: We have synthesized 21 compounds and were screened for anticancer activity against MCF-7, HeLa, A-549 and Du-145 cancer cell lines. Most of the compounds were active for tested cell lines with IC50 value in the range of 1.81 to 9.73 μM. The compounds 18, 19, 21, 25, 30, 31 and 33 are most active in cell line data with IC50 value in the range of 1.81 to 2.52 μM.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


Sign in / Sign up

Export Citation Format

Share Document