Effect of SGLT-1/2 inhibition on mitochondrial dysfunction in left atrial remodeling during HFpEF

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
D Bode ◽  
L Semmler ◽  
N Hegemann ◽  
U Primessnig ◽  
P Wakula ◽  
...  

Abstract Background In the DAPA-HF trial, SGLT inhibition reduces cardiovascular mortality in heart failure. However, the mechanism and a potential positive effect in HfpEF remain elusive. Introduction LA remodeling is a hallmark feature of HFpEF and commonly associated with LA enlargement and dysfunction. Previous studies of SGLT-2 inhibitor Empagliflozin suggest a utilization of alternative metabolites for energy consumption (i.e. ketone bodies). Additionally, alterations of sodium and calcium ion hemostasis have been reported. We investigated the effect of SGLT inhibition on mitochondrial (dys)function during atrial remodeling in HFpEF. Methods Rats (WT: Wistar Kyoto, HFpEF: ZFS-1 Obese (metabolic syndrome)) were obtained at ∼10w and fed Purina 5008 diet. At 17w, animals were randomized to treatment with either vehicle or Sota (30mg/kg/d) for 5w until primary adult cardiomyocytes were isolated for final experiments. Structural information of mitochondria was obtained with Mitotracker Red in either a glucose starved (1h incubation with mannitol) or saturated state. ROS production was assessed with H2-DCF in a starved and saturated condition. Mitochondrial calcium buffer capacity was imaged with Rhod-2 following perforation of the cellular membrane with saponin. Glycolytic dependency of calcium cycling was assessed upon glycolytic inhibition with 2-deoxyglucose during imaging of cytosolic calcium transients with Fura-2. Results In a glucose saturated state, LA cardiomyocytes in HFpEF showed increased mitochondrial density, which was ameliorated with Sota. Sota increased mitochondrial calcium buffer capacity in HFpEF, indicating a decrease in mitochondrial resting calcium. Differences in mitochondrial fission could not be detected. However, during glucose starvation cardiomyocytes showed a decrease in mitochondrial fission and ROS production with Sota. A difference in ROS production was not visible when cells were abruptly challenged with high glucose concentrations, but Sota decreased mitochondrial fission, indicating long term protective properties towards ROS. Glycolytic inhibition led to an increase of cytosolic diastolic calcium and calcium transient peak height in HFpEF vs. WT, indicating an increased glucose dependency of cytosolic calcium cycling, which was mitigated with Sota. Additionally, Sota negated an increase in diastolic calcium, when cardiomyocytes where challenged with high concentrations of glucose after starvation. Conclusion SGLT1/2 inhibition alters mitochondrial calcium uptake in HFpEF and positively affects mitochondrial structure with subsequent decreases of ROS production and enhanced calcium homeostasis. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Else-Kröner-Fresenius-Stiftung, Deutsches Zentrum für Herz-Kreislaufforschung

1984 ◽  
Vol 259 (21) ◽  
pp. 12978-12983 ◽  
Author(s):  
C V Nicchitta ◽  
J R Williamson

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Borger ◽  
D Scheiber ◽  
P Horn ◽  
D Pesta ◽  
U Boeken ◽  
...  

Abstract Background Alterations of mitochondrial function have been identified to play a role in Heart Failure (HF) pathophysiology. Oxidative phosphorylation (OXPHOS) capacity of the myocardium was shown to be reduced in the failing heart. Ineffective mitochondrial function promotes formation of reactive oxygen species (ROS) that may affect remodelling in ischemia. Thus far, human mitochondrial function comparing dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) resembling the main aetiologies of heart failure with reduced ejection fraction (HFrEF) has not been investigated. Purpose We hypothesised that 1. ROS production is elevated in left ventricular myocardial tissue specimens of ICM patients compared to DCM. 2. Mitochondrial OXPHOS capacity is higher in left ventricular myocardial tissue specimens of DCM compared to ICM patients. Methods Myocardial tissue was obtained from the left ventricular apex from 63 patients (38 ICM, 25 DCM) with advanced HFrEF requiring implantation of a Left Ventricular Assist Device (LVAD). We performed high-resolution respirometry (HRR, OROBOROS Oxygraph-2k) in saponine-permeabilised myocardial fibres and measured ROS production fluoroscopically via the Amplex Red method. Statistical analysis was conducted using GraphPad Prism 7 and IBM SPSS v26.0. Results Groups were of comparable age (61.5±1.2 vs. 59.3±2.4 years, p=n.s.), sex (87% vs 85% male, p=n.s.), diabetic status (32% vs 38.4% type 2 diabetes mellitus, p=n.s.), and body mass index (28.1±0.8 vs. 26.3±1.1 kg/m2, p=n.s.). We detected reduced myocardial mitochondrial OXPHOS capacity in ICM under state 3 conditions by about 15% (68.7±34.0 vs. 80.9±30.5 pmol/(s*mg), p<0.05), after addition of Glutamate by 25% (78.9±38.7 vs. 104.8±41.2 pmol/(s*mg), p<0.01) as well as after Succinate (115.5±65.5 vs. 155±62.0 pmol/(s*mg), p<0.01), uncoupling agent FCCP (114.1±56.8 vs. 150.5±47.3 pmol/(s*mg), p<0.01), and by about 40% after addition of Complex I inhibitor Rotenone (55.5±25.9 vs. 96.9±28.0 pmol/(s*mg), p<0.001). We detected no difference in ROS production between ICM and DCM (0.6±0.05 vs. 0.76±0.08 pmol/(s*ml), p=n.s.). Conclusion This is the first human study deciphering distinct alterations in mitochondrial function (OXPHOS capacity) in ventricular myocardium of HFrEF patients. Future studies may address how distinct metabolic patterns at the time of implantation may relate to long-term outcome of HFrEF in terms of remodelling and recovery. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): DFG (German Research Foundation)


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Kumfu ◽  
S.C Chattipakorn ◽  
N Chattipakorn

Abstract Background Iron overload cardiomyopathy is a common cause of death in iron overload patients. L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been shown to play important roles for iron uptake into the heart under iron overload condition. Recently, cardiomyocytes which exposed to lipocalin-2 (LCN-2) have been shown to increase apoptosis due to excessive intracellular iron accumulation. However, the mechanistic roles of LCN-2 and LCN-2 receptor (LCN-2R) as iron transporters in cardiomyocytes under iron overload condition have never been investigated. Purpose We hypothesized that the LCN-2 and LCN-2R are alternate iron uptake pathways into cardiomyocytes under iron overload condition. Methods H9c2 cardiomyocytes were treated with either LCN-2 siRNA or LCN-2R siRNA for 72 hr or LTCC blocker (verapamil), TTCC blocker (TTA-P2), or iron chelator deferiprone (DFP) for 1 hr. After treatment, cells were exposed to ferric ammonium citrate (FAC, Fe3+) or FAC + 1mM ascorbic acid (Fe2+) at 200 μM for 48 hr. Intracellular iron level, cell viability, mitochondrial dynamics, mitophagy and apoptosis were determined. Results Both Fe2+ and Fe3+ treated groups showed significantly increased intracellular iron uptake, decreased cell viability, increased mitochondrial fission, mitophagy and apoptotic protein expression in cardiomyocytes. Under Fe2+ overload condition, treatments with LTCC blocker, TTCC blocker, and DFP could significantly decrease intracellular iron accumulation and increase cell viability via decreasing mitochondrial fission, mitophagy and cleaved caspase-3 (Figure), whereas both LCN-2 and LCN-2R siRNA treatment had no beneficial effects on these parameters. Under Fe3+ overload condition, treatment with LCN-2 siRNA, LCN-2R siRNA, and DFP showed beneficial effects on those parameters, whereas neither LTCC nor TTCC blocker provided these benefits (Figure 1). Conclusion Silencing of LCN-2 and LCN-2R increased cardiomyocyte viability via decreasing iron uptake, mitochondrial fission, mitophagy and apoptosis under Fe3+ iron overload condition. Meanwhile, treatment with calcium channel blockers improved cardiomyocytes viability via decreasing iron uptake, mitochondrial fission, mitophagy and apoptosis under Fe2+ iron overload condition. All of these findings suggested that LTCC and TTCC played important roles for Fe2+ uptake, whereas LCN-2 and LCN-2R were essential for Fe3+ uptake into the cardiomyocytes under iron overload conditions. Figure 1. Cell viability and apoptosis Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Thailand Research Fund and NSTDA Research Chair Grant (NC)


2021 ◽  
Vol 18 ◽  
Author(s):  
Xue Gao ◽  
Xiu Wang ◽  
Lei Zhang ◽  
Ge Liang ◽  
Rachel Mund ◽  
...  

Background: We have hypothesized that the most commonly used intravenous (propofol) and inhalational (sevoflurane) general anesthetics affect cell survival concentration and duration dependently with different potency associated with their differential potency to affect intracellular calcium homeostasis. Methods: Human neuroblastoma SH-SY5Y cells stably transfected with either wild type or M146L mutant human presenilin 1 were cultured and exposed to equipotent of propofol or sevoflurane. Cell viability, cytosolic and mitochondrial calcium were measured. Results: Sevoflurane but not propofol, at clinically relevant concentrations and durations, promoted cell survival. Prolonged exposure (24 hours) of 1% sevoflurane resulted in significant cell damage in both types of cells. Both sevoflurane and propofol had significantly higher cell response rates to the elevation of cytosolic calcium or mitochondrial calcium in the presence of extracellular calcium. With the contribution of calcium influx, sevoflurane but not equipotent 1 MAC propofol, caused a significantly greater increase in peak and overall calcium in Alzheimer’s mutation cell than in wild type cells, but significantly more increase in overall mitochondrial calcium concentrations in wild type than mutation cells. In the absence of extracellular calcium influx, sevoflurane, but not propofol, caused more significant elevations of overall mitochondrial calcium concentration in mutation cells than control cells. Conclusion: Calcium influx contributed to the general anesthetics mediated elevation of cytosolic or mitochondrial calcium, which is especially true for propofol. Sevoflurane has a greater potency to either promote or inhibit cell survival than propofol, which may be associated with its ability to affect cytosolic or mitochondrial calcium.


2012 ◽  
Vol 3 (11) ◽  
pp. 873-883 ◽  
Author(s):  
José-Carlos Fernández-Morales ◽  
Juan-Alberto Arranz-Tagarro ◽  
Enrique Calvo-Gallardo ◽  
Marcos Maroto ◽  
Juan-Fernando Padín ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document