constraint release
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 7)

H-INDEX

26
(FIVE YEARS 3)

2020 ◽  
Vol 7 (3) ◽  
pp. 191046
Author(s):  
Teng Ma ◽  
Guochang Lin ◽  
Huifeng Tan

The constraint release (CR) mechanism has important effects on polymer relaxation and the chains will show different relaxation behaviour in conditions of monodisperse, bidisperse and other topological environments. By comparing relaxation data of linear polyisoprene (PI) chains dissolved in very long matrix and monodisperse melts, Matsumiya et al. showed that CR mechanism accelerates both dielectric and viscoelastic relaxation (Matsumiya et al. 2013 Macromolecules 46 , 6067. ( doi:10.1021/ma400606n )). In this work, the experimental data reported by Matsumiya et al. are reproduced using the single slip-spring (SSp) model and the CR accelerating effects on both dielectric and viscoelastic relaxation are validated by simulations. This effect on viscoelastic relaxation is more pronounced. The coincidence for end-to-end relaxation and the viscoelastic relaxation has also been checked using probe version SSp model. A variant of SSp with each entanglement assigning a characteristic lifetime is also proposed to simulate various CR environment flexibly. Using this lifetime version SSp model, the correct relaxation function can be obtained with equal numbers of entanglement destructions by CR and reptation/contour length fluctuation (CLF) for monodisperse melts. Good agreement with published experiment data is also obtained for bidisperse melts, which validates the ability to correctly describe the CR environment of the lifetime version model.


2020 ◽  
Vol 93 (1) ◽  
pp. 22-62 ◽  
Author(s):  
Yumi Matsumiya ◽  
Hiroshi Watanabe

ABSTRACT For so-called type-A polymer chains having electrical dipoles aligned parallel along their backbone, the large-scale chain motion over the end-to-end distance results in not only viscoelastic but also dielectric relaxation. These two relaxation processes detect the same motion but with different averaging moments, which enables us to experimentally resolve some details of the chain dynamics through comparison of viscoelastic and dielectric data of type-A polymers. For a typical type-A polymer, high-cis polyisoprene (PI), results of such an experimental approach are summarized to discuss characteristic features of an entanglement-loosening process (constraint release and/or dynamic tube dilation process) resolved from the data comparison.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 754 ◽  
Author(s):  
Volha Shchetnikava ◽  
Johan Slot ◽  
Evelyne van Ruymbeke

The aim of the present paper is to analyse the differences between tube-based models which are widely used for predicting the linear viscoelasticity of monodisperse linear polymers, in comparison to a large set of experimental data. The following models are examined: Milner–McLeish, Likhtman–McLeish, the Hierarchical model proposed by the group of Larson, the BoB model of Das and Read, and the TMA model proposed by the group of van Ruymbeke. This comparison allows us to highlight and discuss important questions related to the relaxation of entangled polymers, such as the importance of the contour-length fluctuations (CLF) process and how it affects the reptation mechanism, or the contribution of the constraint release (CR) process on the motion of the chains. In particular, it allows us to point out important approximations, inherent in some models, which result in an overestimation of the effect of CLF on the reptation time. On the contrary, by validating the TMA model against experimental data, we show that this effect is underestimated in TMA. Therefore, in order to obtain accurate predictions, a novel modification to the TMA model is proposed. Our current work is a continuation of earlier research (Shchetnikava et al., 2014), where a similar analysis is performed on well-defined star polymers.


2019 ◽  
Vol 52 (8) ◽  
pp. 3010-3028 ◽  
Author(s):  
Helen Lentzakis ◽  
Salvatore Costanzo ◽  
Dimitris Vlassopoulos ◽  
Ralph H. Colby ◽  
Daniel Jon Read ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 370 ◽  
Author(s):  
Yuichi Masubuchi

Although the tube framework has achieved remarkable success to describe entangled polymer dynamics, the chain motion assumed in tube theories is still a matter of discussion. Recently, Xu et al. [ACS Macro Lett. 2018, 7, 190–195] performed a molecular dynamics simulation for entangled bead-spring chains under a step uniaxial deformation and reported that the relaxation of gyration radii cannot be reproduced by the elaborated single-chain tube model called GLaMM. On the basis of this result, they criticized the tube framework, in which it is assumed that the chain contraction occurs after the deformation before the orientational relaxation. In the present study, as a test of their argument, two different slip-link simulations developed by Doi and Takimoto and by Masubuchi et al. were performed and compared to the results of Xu et al. In spite of the modeling being based on the tube framework, the slip-link simulations excellently reproduced the bead-spring simulation result. Besides, the chain contraction was observed in the simulations as with the tube picture. The obtained results imply that the bead-spring results are within the scope of the tube framework whereas the failure of the GLaMM model is possibly due to the homogeneous assumption along the chain for the fluctuations induced by convective constraint release.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1327 ◽  
Author(s):  
Sijia Li ◽  
Qiaoyue Chen ◽  
Mingming Ding ◽  
Tongfei Shi

Using Monte Carlo simulations, we studied the effect of bidispersity on the dynamics of polymer films capped between two neutral walls, where we chose three representative compositions for bidispersed polymer films. Our results demonstrate that the characteristic entanglement length is an important parameter to clarify the effect of the bidispersity on the dynamics of polymer films. For the short chains, shorter than the characteristic entanglement length, the average number of near-neighboring particles increases with the decrease of the film thickness and limits the diffusivity of the short chains, which is independent of the film compositions. However, the dynamics of the long chains, of which is above the characteristic entanglement length, is determined by the film’s composition. In our previous paper, we inferred from the structures and entanglements of the bidisperse system with short and long chains that the constraint release contributes significantly to the relaxation mechanism of long chains. By calculating the self-diffusion coefficient of long chains, we confirmed this prediction that, with a lower weight fraction of long chains, the self-diffusion coefficient of long chains decreases slowly with the decrease of the film thickness, which is similar to that of short chains. With a higher weight fraction of long chains, the competition between the disentanglement and the increased in the local degree of confinement which resulted in the self-diffusion coefficient of long chains varying non-monotonically with the film thickness. Furthermore, for the bidisperse system with long and long chains, the diffusivity of long chains was not affected by the constraint release, which varied nonmonotonically with the decrease of the film thickness due to the competition between the disentanglement and the enhanced confinement. Herein, compared with the previous work, we completely clarified the relationship between the structures and dynamics for three representative compositions of bidisperse polymer films, which contains all possible cases for bidisperse systems. Our work not only establishes a unified understanding of the dependency of dynamics on the bidispersity of polymer films, but also helps to understand the case of polydispersity, which can provide computational supports for various applications for polymer films.


2018 ◽  
Author(s):  
Maciej Kawecki ◽  
Philipp Gutfreund ◽  
Peter Falus ◽  
David Uhrig ◽  
Sudipta Gupta ◽  
...  

<div><div><div><div><p>We present in-situ neutron spin echo measurements on an entangled polydimethylsiloxane melt under shear and demonstrate the ability to monitor nano-scale dynamics in flowing liquids. We report no changes in the topological interactions of the chains for shear rates approaching the inverse longest relaxation time. Further experiments following along this line will allow to systematically test the predictions of theories, like e.g. convective constraint release.</p></div></div></div></div>


2018 ◽  
Author(s):  
Maciej Kawecki ◽  
Philipp Gutfreund ◽  
Peter Falus ◽  
David Uhrig ◽  
Sudipta Gupta ◽  
...  

<div><div><div><div><p>We present in-situ neutron spin echo measurements on an entangled polydimethylsiloxane melt under shear and demonstrate the ability to monitor nano-scale dynamics in flowing liquids. We report no changes in the topological interactions of the chains for shear rates approaching the inverse longest relaxation time. Further experiments following along this line will allow to systematically test the predictions of theories, like e.g. convective constraint release.</p></div></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document