primary antibody deficiencies
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 35)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Shirli Israeli ◽  
Allison Golden ◽  
Melissa Atalig ◽  
Najla Mekki ◽  
Afef Rais ◽  
...  

Abstract Purpose No rapid diagnostic test exists to screen individuals for primary antibody deficiencies (PAD) at or near the point of care. In settings at risk for polio where live oral polio vaccine is utilized, undiagnosed PAD patients and cases with delayed diagnosis constitute a potential reservoir for neurovirulent polioviruses, undermining polio eradication. This research aimed to develop a rapid screening test suited for use in resource-limited settings to identify individuals with low immunoglobulin G (IgG) levels, enabling early diagnosis and appropriate treatment. Methods Three prototype tests distinguishing low and normal IgG levels were evaluated with a blinded panel of serum/plasma specimens from 32 healthy controls and 86 primary immunodeficiency-confirmed patients with agammaglobulinemia, common variable immunodeficiency, and hyper-IgM syndrome, including 57 not receiving IgG therapy. Prototype tests were compared to laboratory reference and clinical case definition. Results The leading prototype correctly identified 32 of 32 healthy controls. Among primary antibody deficiency patients not receiving IgG treatment, 17 of 19 agammaglobulinemia, 7 of 24 common variable immunodeficiency, and 5 of 14 hyper-IgM were correctly identified by the prototype, with 67% agreement with the reference assay. Conclusion The Rapid IgG Screen (RIgGS) test can differentiate between low IgG levels associated with agammaglobulinemia and normal IgG antibody levels. Differentiating CVID and hyper IgM was challenging due to the wide range in IgG levels and influence of high IgM. This test can facilitate the identification of patients with primary antibody deficiencies and support polio surveillance initiatives.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2915
Author(s):  
Federica Pulvirenti ◽  
Ane Fernandez Salinas ◽  
Cinzia Milito ◽  
Sara Terreri ◽  
Eva Piano Mortari ◽  
...  

Background: Patients with primary antibody deficiencies are at risk in the current COVID-19 pandemic due to their impaired response to infection and vaccination. Specifically, patients with common variable immunodeficiency (CVID) generated poor spike-specific antibody and T cell responses after immunization. Methods: Thirty-four CVID convalescent patients after SARS-CoV-2 infection, 38 CVID patients immunized with two doses of the BNT162b2 vaccine, and 20 SARS-CoV-2 CVID convalescents later and immunized with BNT162b2 were analyzed for the anti-spike IgG production and the generation of spike-specific memory B cells and T cells. Results: Spike-specific IgG was induced more frequently after infection than after vaccination (82% vs. 34%). The antibody response was boosted in convalescents by vaccination. Although immunized patients generated atypical memory B cells possibly by extra-follicular or incomplete germinal center reactions, convalescents responded to infection by generating spike-specific memory B cells that were improved by the subsequent immunization. Poor spike-specific T cell responses were measured independently from the immunological challenge. Conclusions: SARS-CoV-2 infection primed a more efficient classical memory B cell response, whereas the BNT162b2 vaccine induced non-canonical B cell responses in CVID. Natural infection responses were boosted by subsequent immunization, suggesting the possibility to further stimulate the immune response by additional vaccine doses in CVID.


Author(s):  
Sinem Firtina ◽  
Yuk Yin Ng ◽  
Ozden H. Ng ◽  
Ayca Kiykim ◽  
Esra Yucel Ozek ◽  
...  

Author(s):  
Sinem Firtina ◽  
Yuk Yin Ng ◽  
Ozden H. Ng ◽  
Ayca Kiykim ◽  
Esra Yucel Ozek ◽  
...  

Medicina ◽  
2021 ◽  
Vol 57 (8) ◽  
pp. 827
Author(s):  
Ioannis Kakkas ◽  
Gerasimina Tsinti ◽  
Fani Kalala ◽  
Evangelia Farmaki ◽  
Alexandra Kourakli ◽  
...  

Background and objectives: Monoallelic (heterozygous) or biallelic (homozygous or compound heterozygous) TACI mutations have been reported as the most common genetic defects in patients with common variable immunodeficiency (CVID), which is the most common clinically significant primary immunodeficiency in humans. The aim of our study was to evaluate the prevalence and any correlations of TACI defects in Greek patients with primary antibody deficiencies. Materials and Methods: 117 patients (male/female: 53/64) with CVID (110) and a combined IgA and IgG subclass deficiency (7) with a CVID-like clinical phenotype were enrolled in the study. Genomic DNA was extracted from peripheral blood and the molecular analysis of the TACI gene was performed by PCR (Polymerase Chain Reaction) and sequencing of all 5 exons, including exon–intron boundaries. Results: Seventeen patients (14.5%) displayed TACI defects, four (23.5%) carried combined heterozygous mutations and 13 (76.5%) carried single heterozygous mutations. The most frequently detected mutation was C104R (58.8%), followed by I87N (23.5%) and A181E (11.8%), while R20C, C62Y, P151L, K188M and E236X mutations were present in only one patient each. Patients with TACI defects were more frequently male (p = 0.011) and displayed a benign lymphoproliferation (splenomegaly and lymph node enlargement, p = 0.047 and p = 0.002, respectively), had a history of tonsillectomy (p = 0.015) and adenoidectomy (p = 0.031) and more frequently exhibited autoimmune cytopenias (p = 0.046). Conclusions: Considering that accumulating evidence suggests several CVID patients have a complex rather than a monogenic inheritance, our data further support the notion that TACI mutations, particularly as monoallelic defects, should be primarily considered as susceptibility co-factors and/or modifiers of primary antibody deficiencies.


2021 ◽  
Author(s):  
Ane Fernandez Salinas ◽  
Eva Piano Mortari ◽  
Sara Terreri ◽  
Concetta Quintarelli ◽  
Federica Pulvirenti ◽  
...  

Background. Patients with Primary Antibody Deficiencies (PAD) represent a potential at-risk group in the current COVID-19 pandemic. However, unexpectedly low cumulative incidence, low infection-fatality rate, and mild COVID-19 or asymptomatic SARS-CoV-2 infections were frequently reported in PAD. The discrepancy between clinical evidence and impaired antibody production requires in-depth studies on patients immune responses. Methods. Forty-one patients with Common Variable Immune Deficiencies (CVID), 6 patients with X-linked Agammaglobulinemia (XLA), and 28 healthy age-matched controls (HD) were analyzed for anti-Spike and anti-RBD antibody production, generation of low and high affinity Spike-specific memory B-cells, Spike-specific T-cells before and one week after the second dose of BNT162b2 vaccine. Results. HD produced antibodies, and generated memory B-cells with high affinity for Trimeric Spike. In CVID, the vaccine induced poor Spike-specific antibodies, and atypical B-cells with low affinity for Trimeric Spike, possibly by extra-follicular reactions or incomplete germinal center reactions. In HD, among Spike positive memory B-cells, we identified receptor-binding-domain-specific cells that were undetectable in CVID, indicating the incapability to generate this new specificity. Specific T-cell responses toward Spike-protein were evident in HD and defective in CVID. Due to the absence of B-cells, patients with XLA responded to immunization by specific T-cell responses only. Conclusions. We present detailed data on early non-canonical immune responses in PAD to a vaccine against an antigen never encountered before by humans. From our data, we expect that after BNT162b2 immunization, XLA patients might be protected by specific T-cells, while CVID patients might not be protected by immunization. Key words: Primary Antibody Deficiencies, Common Variable Immune Deficiencies, X-linked Agammaglobulinemia, COVID-19, SARS-CoV-2, BNT162b2 vaccine, memory cells, affinity, Trimeric Spike, receptor-binding-domain.


Sign in / Sign up

Export Citation Format

Share Document