scholarly journals Characterization of Polyvinylidene Difluoride-based Energy Harvesting with IDE Circuit Flexible Cantilever Beam

2022 ◽  
Vol 30 (1) ◽  
pp. 605-619
Author(s):  
Khairul Azman Ahmad ◽  
Noramalina Abdullah ◽  
Mohamad Faizal Abd Rahman ◽  
Muhammad Khusairi Osman ◽  
Rozan Boudville

Piezoelectric energy harvesting is the process of extracting electrical energy using energy harvester devices. Any stress in the piezoelectric material will generate induced voltage. Previous energy harvester device with stiff cantilever beam was generated low harvested energy. A flexural piezoelectric energy harvester is proposed to improve the generated harvesting energy. Polyvinylidene difluoride is a polymer piezoelectric material attached to a flexible circuit made of polyimide. Four interdigitated electrode circuits were designed and outsourced for fabrication. The polyvinylidene difluoride was then attached to the interdigitated electrode circuit, and a single clear adhesive tape was used to bind them. Four piezoelectric energy harvesters and ultrasonic ceramic generators were experimentally tested using a sieve shaker. The sieve shaker contains a two-speed oscillator, with M1=0.025 m/s and M2=0.05 m/s. It was used to oscillate the energy harvester devices. The resulting induced voltages were then measured. Design 4, with the widest width of electrode fingers and the widest gap between electrode fingers, had the highest power generated at an output load of 0.745 µW with the M2 oscillation speed. The oscillation speed of the sieve shaker impacted the energy harvester devices as a higher oscillation speed gave higher generated power.

Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


Author(s):  
Shaofan Qi ◽  
Roger Shuttleworth ◽  
S. Olutunde Oyadiji

Energy harvesting is the process of converting low level ambient energy into usable electrical energy, so that remote electronic instruments can be powered without the need for batteries or other supplies. Piezoelectric material has the ability to convert mechanical energy into electrical energy, and cantilever type harvesters using this material are being intensely investigated. The typical single cantilever energy harvester design has a limited bandwidth, and is restricted in ability for converting environmental vibration occurring over a wide range of frequencies. A multiple cantilever piezoelectric generator that works over a range of frequencies, yet has only one Piezo element, is being investigated. The design and testing of this novel harvester is described.


Author(s):  
H. Li ◽  
S. D. Hu ◽  
H. S. Tzou

Piezoelectric energy harvesting has experienced significant growth over the past few years. Various harvesting structures have been proposed to convert ambient vibration energies to electrical energy. However, these harvester’s base structures are mostly beams and some plates. Shells have great potential to harvest more energy. This study aims to evaluate a piezoelectric coupled conical shell based energy harvester system. Piezoelectric patches are laminated on the conical shell surface to convert vibration energy to electric energy. An open-circuit output voltage of the conical energy harvester is derived based on the thin-shell theory and the Donnel-Mushtari-Valsov theory. The open-circuit voltage and its derived energy consists of four components respectively resulting from the meridional and circular membrane strains, as well as the meridional and circular bending strains. Reducing the surface of the harvester to infinite small gives the spatial energy distribution on the shell surface. Then, the distributed modal energy harvesting characteristics of the proposed PVDF/conical shell harvester are evaluated in case studies. The results show that, for each mode with unit modal amplitude, the distribution depends on the mode shape, harvester location, and geometric parameters. The regions with high strain outputs yield higher modal energies. Accordingly, optimal locations for the PVDF harvester can be defined. Also, when modal amplitudes are specified, the overall energy of the conical shell harvester can be calculated.


2012 ◽  
Vol 24 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Hao Wu ◽  
Lihua Tang ◽  
Yaowen Yang ◽  
Chee Kiong Soh

Energy harvesting from ambient vibrations using piezoelectric effect is a promising alternative solution for powering small electronics such as wireless sensors. A conventional piezoelectric energy harvester usually consists of a cantilevered beam with a proof mass at its free end. For such a device, the second resonance of the piezoelectric energy harvester is usually ignored because of its high frequency as well as low response level compared to the first resonance. Hence, only the first mode has been frequently exploited for energy harvesting in the reported literature. In this article, a novel compact piezoelectric energy harvester using two vibration modes has been developed. The harvester comprises one main cantilever beam and an inner secondary cantilever beam, each of which is bonded with piezoelectric transducers. By varying the proof masses, the first two resonant frequencies of the harvester can be tuned close enough to achieve useful wide bandwidth. Meanwhile, this compact design efficiently utilizes the cantilever beam by generating significant power output from both the main and secondary beams. An experiment and simulation were carried out to validate the design concept. The results show that the proposed novel piezoelectric energy harvester is more adaptive and functional in practical vibrational circumstances.


Aerospace ◽  
2006 ◽  
Author(s):  
R. M. Tieck ◽  
G. P. Carman ◽  
D. G. Enoch Lee

This paper presents a new approach using frequency rectification to harvest electrical energy from mechanical energy using piezoelectric devices. The rectification approach utilizes a linearly traveling Rectifier to impart vibrational motion to a cantilever piezoelectric bimorph. A conventional cantilever-type energy harvester is tested aside the rectified beam. The Standard beam generated 0.11 W of power, a power density of 15.63 kW/m3, and an energy density of 130.7 J/m3. The Rectified beam generated 580 mW of power, a power density of 871.92 kW/m3, and an energy density of 313.15 J/m3, a factor 2.4 greater than conventional energy harvesting methods. These results confirm the original thesis that a mechanically rectified piezoelectric Energy Harvester would generate larger Energy and Power Densities as well as Specific Powers, compared to conventional technologies.


Author(s):  
M. Carrara ◽  
M. R. Cacan ◽  
J. Toussaint ◽  
M. J. Leamy ◽  
M. Ruzzene ◽  
...  

Enhancement of structure-borne wave energy harvesting is investigated by exploiting metamaterial-based and metamaterial-inspired electroelastic systems. The concepts of wave focusing, funneling, and localization are leveraged to establish novel Metamaterial–Energy Harvester (MEH) configurations. The MEH system transforms the incoming structure-borne wave energy into electrical energy by coupling the metamaterial and electroelastic domains. The energy harvesting component of the work employs piezoelectric transduction due to the high power density and ease of application offered by piezoelectric materials. Therefore, in all MEH configurations studied in this work, the metamaterial system is combined with piezoelectric energy harvesting for enhanced electricity generation from waves propagating in elastic structures. Experiments are conducted to validate the dramatic performance enhancement in MEH systems as compared to using the same volume of piezoelectric patch in the absence of the metamaterial component. It is shown that MEH systems can be used for both broadband and tuned wave energy harvesting. Examples include (1) wave guiding using an acoustic funnel, (2) wave focusing using a metamaterial-inspired elliptical acoustic mirror (both for broadband energy harvesting), and (3) energy localization using an imperfection in a 2-D lattice structure (for tuned energy harvesting).


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2876
Author(s):  
Hailu Yang ◽  
Ya Wei ◽  
Weidong Zhang ◽  
Yibo Ai ◽  
Zhoujing Ye ◽  
...  

Road power generation technology is of significance for constructing smart roads. With a high electromechanical conversion rate and high bearing capacity, the stack piezoelectric transducer is one of the most used structures in road energy harvesting to convert mechanical energy into electrical energy. To further improve the energy generation efficiency of this type of piezoelectric energy harvester (PEH), this study theoretically and experimentally investigated the influences of connection mode, number of stack layers, ratio of height to cross-sectional area and number of units on the power generation performance. Two types of PEHs were designed and verified using a laboratory accelerated pavement testing system. The findings of this study can guide the structural optimization of PEHs to meet different purposes of sensing or energy harvesting.


2021 ◽  
Vol 12 (07) ◽  
pp. 318-329
Author(s):  
Indrajit Chandra Das ◽  
Md. Arafat Rahman ◽  
Sanjoy Dam

Energy harvesting is defined as a process of acquiring energy surrounding a system and converting it into electrical energy for usage. Piezoelectric energy harvesting is a very important concept in energy harvesting in microelectronics. In this report, an analysis of the cantilever type piezoelectric energy harvester is conducted using the finite element method (FEM) based software COMSOL Multiphysics. A unimorph type cantilever beam of the silicon substrate, structural steel as proof mass and support, and PZT-5A material as piezoelectric constitute the physical system.


2019 ◽  
Vol 8 (4) ◽  
pp. 6332-6337

This paper reviews the piezoelectric energy harvesting from mechanical vibration. The recent development in the microelectronic devices and wireless sensor networks (WSNs) requires continuous power source for better performance. Many researchers have been done to develop a permanent portable power source for microelectronic devices. Micro energy harvesting (MEH) consists of two basic elements; freely available energy and transducer. Energy is everywhere around us in different forms. The energy conversion ability of piezoelectric energy harvester is high among different MEH techniques. A cantilever type piezoelectric energy harvester under different shapes is mostly studied in the last few years. The output of piezoelectric harvester depends upon the deflection produced, more deflection led to more electrical output. The deflection in cantilever beam under different shapes is different. This review paper presents a comparison of different piezoelectric cantilever beam shapes and output generated analyzed in the last decade.


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 261 ◽  
Author(s):  
Tian Deng ◽  
Shunzu Zhang ◽  
Yuanwen Gao

In this work, an innovative vibration energy harvester is designed by using the point defect effect of two-dimensional (2D) magneto-elastic phononic crystals (PCs) and the piezoelectric effect of piezoelectric material. A point defect is formed by removing the central Tenfenol-D rod to confine and enhance vibration energy into a spot, after which the vibration energy is electromechanically converted into electrical energy by attaching a piezoelectric patch into the area of the point defect. Numerical analysis of the point defect can be carried out by the finite element method in combination with the supercell technique. A 3D Zheng-Liu (Z-L) model which accurately describes the magneto-mechanical coupling constitutive behavior of magnetostrictive material is adopted to obtain variable band structures by applied magnetic field and pre-stress along the z direction. The piezoelectric material is utilized to predict the output voltage and power based on the capacity to convert vibration energy into electrical energy. For the proposed tunable vibration energy harvesting system, numerical results illuminate that band gaps (BGs) and defect bands of the in-plane mixed wave modes (XY modes) can be adjusted to a great extent by applied magnetic field and pre-stress, and thus a much larger range of vibration frequency and more broad-distributed energy can be obtained. The defect bands in the anti-plane wave mode (Z mode), however, have a slight change with applied magnetic field, which leads to a certain frequency range of energy harvesting. These results can provide guidance for the intelligent control of vibration insulation and the active design of continuous power supply for low power devices in engineering.


Sign in / Sign up

Export Citation Format

Share Document