scholarly journals Histone lysine-specific demethylase 1 induced renal fibrosis via decreasing sirtuin 3 expression and activating TGF-β1/Smad3 pathway in diabetic nephropathy

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Lina Dong ◽  
Lei Yu ◽  
Jin Zhong

Abstract Objective Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Histone lysine-specific demethylase 1 (LSD1) is a flavin-containing amino oxidase that can repress or activate transcription. The aim of this study is to explore the mechanism of LSD1 aggravating DN-induced renal fibrosis. Methods The STZ-induced DN rat model was established for in vivo study. The rats were divided into four groups: Sham, STZ, STZ + Ad-shNC and Ad-shLSD1. The Hematoxylin–eosin (HE) staining was used to evaluate the renal injury. The Immunofluorescence assay was used to determine the LSD1, Fibronectin and α-SMA expression. The related protein expression was detected by western blot. Results Knockdown of LSD1 alleviated STZ-induced renal injury. Moreover, knockdown of LSD1 decreased the expression of serum biochemical markers, containing urine output (24 h), urinary protein (24 h), serum creatinine, BUN and UACR. Furthermore, we proved that knockdown of LSD1 alleviated renal fibrosis in STZ-induced DN rats. In vitro, knockdown of LSD1 suppressed NRK-49F cells activation and overexpression of LSD1 induced renal fibrosis. In addition, knockdown of LSD1 could deactivate TGF-β1/Smad3 pathway and promote sirtuin 3 (SIRT3) expression in vivo and in vitro. The rescue experiments confirmed that LSD1 induced renal fibrosis via decreasing SIRT3 expression and activating TGF-β1/Smad3 pathway. Conclusion LSD1 deficiency leads to alleviate STZ-induced renal injury and overexpression of LSD1 induces renal fibrosis via decreasing SIRT3 expression and activating TGF-β1/Smad3 pathway, which provides a reasonable strategy for developing novel drugs targeting LDS1 to block renal fibrosis.

2021 ◽  
pp. 096032712110387
Author(s):  
Huali Zhang ◽  
Jiaming Xing ◽  
Lingwei Zhao

Objective TGF-β1-induced excessive deposition of extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) process of tubular epithelial cells play critical roles in the progression of renal fibrosis. We are aimed to explore the effects of lysine-specific demethylase 1 (LSD1) in TGF-β1-treated HK-2 cells and in rats with unilateral ureteral obstruction (UUO), and to investigate the underlying molecular mechanism. Methods TGF-β1-treated HK-2 cells and UUO-treated rats were used to establish the model of renal fibrosis in vitro and in vivo, respectively. Protein expression of LSD1, E-cadherin, a-smooth muscle actin (a-SMA), Vimentin, Jagged-1, Notch-1 and Notch-2 were detected by Western blot. The concentrations of type I collagen (Col-I) and Fibronectin (FN) were measured by ELISA. Transwell assay were used to assess cell invasion. Results LSD1 was dramatically increased in TGF-β1-stimulated HK-2 cells. Knockdown of LSD1 decreased the TGF-β1-induced secretion of Col-I and FN, and suppressed TGF-β1-induced expression of E-cadherin,α-SMA and Vimentin, while suppressed cell invasion. Consistent with the in vitro data, the severe histopathological damage, collagen deposition and reduced E-cadherin, increased α-SMA induced by UUO was abated by the knockdown of LSD1 in vivo. Moreover, knockdown of LSD1 suppressed TGF-β1-induced expression of Jagged-1, Notch-1 and Notch-2. Furthermore, we found that inhibition of Notch signaling by a γ-secretase inhibitor RO4929097 almost recapitulated the effects of LSD1 knockdown in TGF-β1-induced HK-2 cells, and at least in part reversed the effects of LSD1 overexpression on EMT and ECM deposition in HK-2 cells. Conclusions Taken together, LSD1 significantly impact on the progression of TGF-β1-mediated EMT and ECM deposition in HK-2 cells, and it may represent novel target for the prevention strategies of renal fibrosis.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
MingJun Shi ◽  
PingPing Tian ◽  
ZhongQiang Liu ◽  
Fan Zhang ◽  
YingYing Zhang ◽  
...  

Abstract Diabetic nephropathy (DN) commonly causes end-stage renal disease (ESRD). Increasing evidence indicates that abnormal miRNA expression is tightly associated with chronic kidney disease (CKD). This work aimed to investigate whether miR-27a can promote the occurrence of renal fibrosis in DN by suppressing the expression of secreted frizzled-related protein 1 (Sfrp1) to activate Wnt/β-catenin signalling. Therefore, we assessed the expression levels of miR-27a, Sfrp1, Wnt signalling components, and extracellular matrix (ECM)-related molecules in vitro and in vivo. Sfrp1 was significantly down-regulated in a high-glucose environment, while miR-27a levels were markedly increased. A luciferase reporter assay confirmed that miR-27a down-regulated Sfrp1 by binding to the 3′ untranslated region directly. Further, NRK-52E cells under high-glucose conditions underwent transfection with miR-27a mimic or the corresponding negative control, miR-27a inhibitor or the corresponding negative control, si-Sfrp1, or combined miR-27a inhibitor and si-Sfrp1. Immunoblotting and immunofluorescence were performed to assess the relative expression levels of Wnt/β-catenin signalling and ECM components. The mRNA levels of Sfrp1, miR-27a, and ECM-related molecules were also detected by quantitative real-time PCR (qPCR). We found that miR-27a inhibitor inactivated Wnt/β-catenin signalling and reduced ECM deposition. Conversely, Wnt/β-catenin signalling was activated, while ECM deposition was increased after transfection with si-Sfrp1. Interestingly, miR-27a inhibitor attenuated the effects of si-Sfrp1. We concluded that miR-27a down-regulated Sfrp1 and activated Wnt/β-catenin signalling to promote renal fibrosis.


2021 ◽  
Author(s):  
Duojun Qiu ◽  
Shan Song ◽  
Yawei Bian ◽  
Chen Yuan ◽  
wei zhang ◽  
...  

Abstract Background: Diabetic nephropathy is one of the main complications of diabetes, inflammation and fibrosis play an important role in its progress. NAD (P) H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and toxic quinone damage. In present study, we aimed to investigate the protective effects and underlying mechanisms of NQO1 on diabetes-induced renal inflammation and fibrosis. Methods: In vivo, adeno-associated virus serotype 9 was used to infect the kidneys of type 2 diabetes model db/db mice to overexpress NQO1. In vitro, human renal tubular epithelial cells (HK-2) transfected with NQO1 pcDNA were cultured in high glucose. The gene and protein expression were assessed by quantitative real-time PCR, western blot, immunofluorescence, and immunohistochemical staining. Mitochondrial reactive oxygen species was detected by MitoSox red. Result: Our study revealed that the expression of NQO1 was markedly down-regulated, Toll-like receptor 4 (TLR4) and TGF-β1 upregulated in vivo and in vitro under diabetic conditions. Overexpression of NQO1 suppressed pro-inflammatory cytokines secretion (IL-6, TNF-α, MCP-1), extracellular matrix (ECM) accumulation (collagen Ⅳ, Fibronectin) and epithelial-mesenchymal transition (EMT) (α-SMA, E-cadherin) in db/db mice kidney and high glucose cultured human renal tubular cells (HK-2). Furthermore, NQO1 overexpression ameliorated high glucose-induced TLR4/NF-κB and TGF-β/Smad pathway activation. Mechanistic studies demonstrated that TLR4 inhibitor (TAK-242) suppressed TLR4/NF-κB signaling pathway, pro-inflammatory cytokines secretion, EMT and ECM-related protein expression in HG-exposed HK-2 cells. In addition, we found that antioxidants NAC and tempol increased the expression of NQO1, decreased the expression of TLR4, TGF-β1, Nox1, Nox4 and ROS production in HK-2 cells cultured with high glucose. Conclusions: These above data suggest that NQO1 alleviates diabetes-induced renal inflammation and fibrosis by regulating TLR4/NF-κB and TGF-β/Smad signaling pathways.


2020 ◽  
Vol 117 (34) ◽  
pp. 20741-20752 ◽  
Author(s):  
Patrick Ming-Kuen Tang ◽  
Ying-ying Zhang ◽  
Jun Xiao ◽  
Philip Chiu-Tsun Tang ◽  
Jeff Yat-Fai Chung ◽  
...  

Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage–myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-β1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-β1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.


RSC Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 5891-5896 ◽  
Author(s):  
Yanhuan Feng ◽  
Jun Xu ◽  
Fan Guo ◽  
Rongshuang Huang ◽  
Min Shi ◽  
...  

The novel small-molecule inhibitor of iNOS (SKLB023) hindered renal interstitial fibrosis in vivo and in vitro by interfering with TGF-β1/Smad3 signaling, highlighting that SKLB023 has potential in the therapeutic strategy for renal fibrosis.


2020 ◽  
Author(s):  
Ada Admin ◽  
Fenfen Peng ◽  
Wangqiu Gong ◽  
Shuting Li ◽  
Bohui Yin ◽  
...  

Diabetic nephropathy (DN), a vascular complication of diabetes mellitus, is the leading cause of death in diabetic patients. The contribution of aberrantly expressed circRNAs to diabetic nephropathy <i>in vivo</i> is poorly understood. Integrated comparative circRNA microarray profiling was used to examine the expression of circRNAs in diabetic kidney of db/db mice. We found that circRNA_010383 expression was markedly downregulated in diabetic kidneys, mesangial cells and tubular epithelial cells cultured in high-glucose conditions. circRNA_010383 colocalized with microRNA-135a (miR-135a) and inhibited miR-135a function by directly binding to miR-135a. <i>In vitro,</i> the knockdown of circRNA_010383 promoted the accumulation of extracellular matrix (ECM) proteins <a></a><a>and </a>downregulated the expression of transient receptor potential cation channel, subfamily C, member (TRPC1), which is a target protein of miR-135a. Furthermore, <a></a><a>circRNA_010383 overexpression</a> effectively inhibited the high-glucose-induced accumulation of ECM and increased TRPC1 levels <i>in vitro</i>. More importantly, the kidney-target of circRNA_010383 overexpression inhibited <a></a><a>proteinuria</a> and renal fibrosis in db/db mice. Mechanistically, we identified that a loss of circRNA_010383 promoted proteinuria and renal fibrosis in DN by acting as a sponge for miRNA-135a. This study reveals that circRNA_010383 may be a novel therapeutic target for DN in the future.


2020 ◽  
Author(s):  
Mi-Gyoeng Gwon ◽  
Hyun-Jin An ◽  
Hyemin Gu ◽  
Young-Ah Kim ◽  
Sang Mi Han ◽  
...  

Abstract Background Renal fibrosis is a progressive and chronic process that influences kidneys with chronic kidney disease (CKD), irrespective of cause, leading to irreversible failure of renal function and end-stage kidney disease. Among the signaling related to renal fibrosis, transforming growth factor-β1 (TGF-β1) signaling is a major pathway that induces the activation of myofibroblasts and the production of extracellular matrix (ECM) molecules. Apamin, a component of bee venom (BV), has been studied in relation to various diseases. However, the effect of apamin on renal interstitial fibrosis has not been investigated. The aim of this study was to estimate the beneficial effect of apamin in unilateral ureteral obstruction (UUO)-induced renal fibrosis and TGF-β1-induced renal fibroblast activation.Results This study revealed that obstructive kidney injury induced an inflammatory response, tubular atrophy, and ECM accumulation. However, apamin treatment suppressed the increased expression of fibrotic-related genes, including α-SMA, vimentin, and fibronectin. Administration of apamin also attenuated the renal tubular cells injury and tubular atrophy. In addition, apamin attenuated fibroblast activation, ECM synthesis, and inflammatory cytokines such as TNF-α, IL-1β and IL-6 by suppressing the TGF-β1-canonical and non-canonical signaling pathways.Conclusions This study shown that apamin inhibites UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibroblasts activation in vitro. Apamin inhibited the inflammatory response, tubular atrophy, ECM accumulation, fibroblast activation, and renal interstitial fibrosis through suppression of TGF-β1/Smad2/3 and STAT3 signaling pathways. These results suggest that apamin might be a potential therapeutic agent for renal fibrosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yingchun Zhu ◽  
Jiang Xu ◽  
Wenxing Liang ◽  
Ji Li ◽  
Linhong Feng ◽  
...  

Recently, microRNAs have been recognized as crucial regulators of diabetic nephropathy (DN) development. Epithelial-to-mesenchymal transition (EMT) can play a significant role in tubulointerstitial fibrosis, and it is a hallmark of diabetic nephropathy progression. Nevertheless, the function of miR-98-5p in the modulation of EMT and renal fibrosis during DN remains barely investigated. Hence, identifying the mechanisms of miR-98-5p in regulating EMT and fibrosis is of huge significance. In our present research, decreased miR-98-5p was demonstrated in db/db mice and mice mesangial cells treated with the high dose of glucose. Meanwhile, activated EMT and increased fibrosis was accompanied with the decrease of miR-98-5p in vitro and in vivo. Additionally, to further find out the roles of miR-98-5p in DN development, overexpression of miR-98-5p was applied. Firstly, in vivo investigation exhibited that elevation of miR-98-5p restrained proteinuria, serum creatinine, BUN, the EMT process, and fibrosis. Furthermore, high glucose was able to promote mice mesangial cell proliferation, EMT process, and induced renal fibrosis, which could be prevented by overexpression of miR-98-5p. Moreover, high mobility group A (HMGA2) can exhibit an important role in diverse biological processes. Here, HMGA2 was investigated as a target of miR-98-5p currently. Luciferase reporter assay was conducted and the correlation of miR-98-5p and HMGA2 was validated. Moreover, it was displayed that HMGA2 was remarkably elevated in db/db mice and mice mesangial cells. Furthermore, miR-98-5p strongly depressed HMGA2 protein and mRNA levels in mice mesangial cells. Overall, these revealed miR-98-5p could suppress the EMT process and renal fibrosis through targeting HMGA2 in DN.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Francesca Conserva ◽  
Paola Pontrelli ◽  
Rossella Menghini ◽  
Michele Rossini ◽  
Alessandra Stasi ◽  
...  

Abstract Background and Aims Diabetic Nephropathy (DN) is the primary cause of end stage renal disease (ESRD). Our group demonstrated that in DN an accumulation of lysine63 (K63)-ubiquitinated proteins at tubular level is involved in the progression of renal damage, in particular renal fibrosis. Current treatments do not provide complete renoprotection and targeted therapies that prevent fibrosis or delay its progression are still lacking. Aim of the present study was to evaluate the renoprotective effect of specific drug and their combinations, including an inhibitor of K63 ubiquitination (K63Ub) and/or an anti-hypertensive agent, in vitro and in vivo in a murine model of DN. Method Renal Proximal Tubule Epithelial Cells (HK2) were pre-incubated with a specific inhibitor of K63Ub and/or with the ACE-inhibitor Ramipril. Accumulation of K63 ubiquitinated proteins along with α-sma expression, indicator of epithelial-to-mesenchymal transition (EMT), were analyzed through immunofluorescence and western blotting. The same drug combination was also tested in streptozotocin (STZ)-treated DBA/2J mice, a model of human DN. In mice, K63Ub was evaluated by IHC, while renal fibrosis was evaluated by Sirius red and Collagen III expression. Urinary albuminuria was measured by ELISA. Results We observed that the association of the specific K63Ub inhibitor with Ramipril was able to block hyperglycemia-induced EMT in HK2 cells by significantly reducing α-sma expression, when compared to single drugs alone (p&lt;0.05).To demonstrate the efficacy of these drug combinations in reducing the progression of renal damage in DN we firstly confirmed the increased accumulation of K63 Ub proteins in DBA/2J STZ-treated mice (p=0.01). Interestingly, increased K63Ub in diabetic mice was also associated to increased tubular-interstitial fibrosis (p&lt;0.05). Treatment of STZ-mice with the specific K63Ub inhibitor was able to reduce both K63Ub proteins accumulation and renal fibrosis, evaluated on kidney samples by IHC against Collagen III (p≤0.05) and by Sirius Red staining (p≤0.05) when compared to both untreated mice and mice treated with ramipril. Importantly, treatment with the K63Ub inhibitor alone did not reduce albuminuria (STZ-mice: 561.29±390.56; STZ+K63Ubinhibitor: 724.25±690.89; p=n.s.), while the drug combination including the specific K63Ub inhibitor and Ramipril, significantly reduced both K63Ub-related fibrosis and albuminuria (p=0.01), demonstrating an addictive and synergic effect of these molecules when used in combination. Conclusion Our data demonstrated and confirmed the importance of K63Ub in the progression of renal fibrosis in vitro and in vivo. We proposed and patented a novel combination of drugs that ameliorates both fibrosis and proteinuria in DN. Novel treatment regimens could represent an important goal for reducing the incidence of ESRD related to diabetes complication.


Sign in / Sign up

Export Citation Format

Share Document