New Delhi metallo-beta-lactamase facilitates the emergence of cefiderocol resistance in Enterobacter cloacae .

Author(s):  
Dennis Nurjadi ◽  
Kaan Kocer ◽  
Quan Chanthalangsy ◽  
Sabrina Klein ◽  
Klaus Heeg ◽  
...  

Cefiderocol is a promising novel siderophore cephalosporin for the treatment of multi-drug resistant Gram-negative bacilli and with stability against degradation by metallo-β-lactamases. Nonetheless, the emergence of cefiderocol in metallo-β-lactamase-producing Enterobacterales during therapy has been reported on more than one occasion. To understand the underlying mechanisms and factors facilitating the resistance development, we conducted an in vitro evolution experiment using clinical E. cloacae isolates via serial passaging under cefiderocol pressure. In this study, we show that the presence of the New-Delhi metallo-β-lactamase (NDM) facilitates the emergence of resistance via non-synonymous mutations of the CirA catecholate siderophore receptor. Inhibition of metallo-β-lactamase activity using dipicolinic acid prevented the emergence of cefiderocol-resistant mutants successfully. This finding implies that caution should be taken, when using cefiderocol for the treatment of infections caused by metallo-β-lactamase- producing bacteria.

2010 ◽  
Vol 55 (3) ◽  
pp. 1068-1074 ◽  
Author(s):  
Sebastien Fraud ◽  
Keith Poole

ABSTRACTExposure to reactive oxygen species (ROS) (e.g., peroxide) was shown to induce expression of the PA5471 gene, which was previously shown to be required for antimicrobial induction of the MexXY components of the MexXY-OprM multidrug efflux system and aminoglycoside resistance determinant inPseudomonas aeruginosa. mexXYwas also induced by peroxide exposure, and this too was PA5471 dependent. The prospect of ROS promotingmexXYexpression and aminoglycoside resistance recallsP. aeruginosainfection of the chronically inflamed lungs of cystic fibrosis (CF) patients, where the organism is exposed to ROS and where MexXY-OprM predominates as the mechanism of aminoglycoside resistance. While ROS did not enhance aminoglycoside resistancein vitro, long-term (8-day) exposure ofP. aeruginosato peroxide (mimicking chronicin vivoROS exposure) increased aminoglycoside resistance frequency, dependent upon PA5471 andmexXY. This enhanced resistance frequency was also seen in a mutant strain overexpressing PA5471, in the absence of peroxide, suggesting that induction of PA5471 by peroxide was key to peroxide enhancement of aminoglycoside resistance frequency. Resistant mutants selected following peroxide exposure were typically pan-aminoglycoside-resistant, withmexXYgenerally required for this resistance. Moreover, PA5471 was required formexXYexpression and aminoglycoside resistance in these as well as several CF isolates examined.


2006 ◽  
Vol 50 (3) ◽  
pp. 827-834 ◽  
Author(s):  
Christopher K. Murphy ◽  
Steve Mullin ◽  
Marcia S. Osburne ◽  
John van Duzer ◽  
Jim Siedlecki ◽  
...  

ABSTRACT We describe novel rifamycin derivatives (new chemical entities [NCEs]) that retain significant activity against a comprehensive collection of Staphylococcus aureus strains that are resistant to rifamycins. This collection of resistant strains contains 21 of the 26 known single-amino-acid alterations in RpoB, the target of rifamycins. Some NCEs also demonstrated a lower frequency of resistance development than rifampin and rifalazil in S. aureus as measured in a resistance emergence test. When assayed for activity against the strongest rifamycin-resistant mutants, several NCEs had MICs of 2 μg/ml, in contrast to MICs of rifampin and rifalazil, which were 512 μg/ml for the same strains. The properties of these NCEs therefore demonstrate a significant improvement over those of earlier rifamycins, which have been limited primarily to combination therapy due to resistance development, and suggest a potential use of these NCEs for monotherapy in several clinical indications.


2012 ◽  
Vol 56 (9) ◽  
pp. 4937-4944 ◽  
Author(s):  
Jurriaan E. M. de Steenwinkel ◽  
Marian T. ten Kate ◽  
Gerjo J. de Knegt ◽  
Henri A. Verbrugh ◽  
Rob E. Aarnoutse ◽  
...  

ABSTRACTDespite great effort by health organizations worldwide in fighting tuberculosis (TB), morbidity and mortality are not declining as expected. One of the reasons is related to the evolutionary development ofMycobacterium tuberculosis, in particular the Beijing genotype strains. In a previous study, we showed the association between the Beijing genotype and an increased mutation frequency for rifampin resistance. In this study, we use a Beijing genotype strain and an East-African/Indian genotype strain to investigate with our mouse TB model whether the higher mutation frequency observed in a Beijing genotype strain is associated with treatment failure particularly during noncompliance therapy. Both genotype strains showed high virulence in comparison to that ofM. tuberculosisstrain H37Rv, resulting in a highly progressive infection with a rapid lethal outcome in untreated mice. Compliance treatment was effective without relapse of TB irrespective of the infecting strain, showing similar decreases in the mycobacterial load in infected organs and similar histopathological changes. Noncompliance treatment, simulated by a reduced duration and dosing frequency, resulted in a relapse of infection. Relapse rates were correlated with the level of noncompliance and were identical for Beijing infection and East African/Indian infection. However, only in Beijing-infected mice, isoniazid-resistant mutants were selected at the highest level of noncompliance. This is in line with the substantial selection of isoniazid-resistant mutantsin vitroin a wide isoniazid concentration window observed for the Beijing strain and not for the EAI strain. These results suggest that genotype diversity ofM. tuberculosismay be involved in emergence of resistance and indicates that genotype-tailor-made treatment should be investigated.


2009 ◽  
Vol 99 (4) ◽  
pp. 441-446 ◽  
Author(s):  
Yu Chen ◽  
Ming-Guo Zhou

Fusarium head blight (FHB) of wheat and other cereals, caused mainly by Fusarium graminearum, is one of the most economically important diseases worldwide, especially in the United States and China. The benzimidazole fungicides, particularly carbendazim (MBC), have been consistently used during the period of wheat heading and flowering in areas with warm and moist weather to control FHB in China for over 30 years. The effectiveness of MBC, however, has been threatened by the emergence of resistant pathogen populations in the field. JS399-19 (experimental number; a.i. 2-cyano-3-amino-3-phenylancryic acetate) is a novel cyanoacrylate fungicide discovered and patented by the Jiangsu Branch of National Pesticide Research & Development South Center of China. To evaluate the potential risk of resistance development in MBC-resistant F. graminearum isolates to this new fungicide JS399-19, five isolates each of MBC-resistant or -sensitive, which were classified into three different sensitivity phenotypes, such as sensitive (S), moderately resistant (MR), and highly resistant (HR) to MBC, were selected to induce JS399-19-resistant mutants by selecting resistance on potato sucrose agar (PSA) plates amended with JS399-19 at 10 μg/ml. In this way, a total of 24 JS399-19-resistant mutants were obtained from all tested MBC-resistant or -sensitive isolates. All 50 single-spore progenies of each of the resistant mutants could grow normally on PSA plates amended with JS399-19 at 10 μg/ml, indicating stability of resistance to this fungicide. Also, all of the resistant mutants maintained their resistance to JS399-19 and/or MBC through eight transfers on PSA plates for 40 days and when stored on PSA slants at 4°C for 60 days. The mycelial growth and conidial production capacity were decreased in 52.4% of the resistant mutants, indicating that a fitness cost was associated with JS399-19-resistant phenotypes of F. graminearum isolates. However, most of the mutants resistant to both MBC and JS399-19 exhibited high sexual reproduction capacity and pathogenicity as their parental isolates. Nevertheless, the majority of these mutants possessed fitness levels comparable to their parents. The results on the efficacy of the two fungicides for controlling FHB incited by the fungicide-resistant mutants were generally consistent with those of the in vitro sensitivity tests. JS399-19 was effective in controlling FHB caused by MBC-resistant isolates under field conditions, while it was not effective in controlling FHB caused by isolates resistant to JS399-19 or those that were resistant to both MBC and JS399-19. Moreover, the efficacy of the mixture of MBC and JS399-19 was also significantly lower in controlling FHB caused by the isolates resistant to both MBC and JS399-19 than the efficacy against the disease caused by the sensitive isolates, the MBC-resistant isolates, or the JS399-19-resistant isolates. The results suggest that JS399-19 possessed a high risk in development of resistance in MBC-resistant and -sensitive F. graminearum isolates, and this double resistance to both of these fungicides could presumable emerge and create a major problem since both these fungicides are extensively used in China. Therefore, careful use of JS399-19 should be followed to delay resistance development in natural populations of F. graminearum, avoid unexpected control failures, and sustain the usefulness of MBC and the new product JS399-19.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S726-S727
Author(s):  
Andrew Mulato ◽  
Rima K Acosta ◽  
Stephen R Yant ◽  
Tomas Cihlar ◽  
Kirsten L White

Abstract Background Short lapses in adherence to ARVs can lead to virologic failure and emergence of resistance. Previous in vitro studies of regimen “forgiveness” simulated drug exposures of perfect adherence or short-term suboptimal adherence with bictegravir+emtricitabine+tenofovir alafenamide (BIC+FTC+TAF) and with dolutegravir and lamivudine (DTG+3TC). Here, viral breakthrough (VB) and resistance development were evaluated under alternating high and low drug exposures simulating variable adherence levels. Methods Wild-type HIV-1 (IIIb)-infected MT-2 cells were exposed to drug combinations and monitored for VB. Experiments alternated between high and low drug concentrations of either BIC+FTC+TAF or DTG+3TC (Table 1). Drug concentrations for each regimen were determined using human plasma-free adjusted clinical trough concentrations (Cmin), at simulated Cmin after missing 2 or 4 consecutive doses (Cmin-2 and Cmin-4) based on drug half-lives. Emergent HIV-1 were genotyped by deep sequencing and a 2% threshold. Results In these experiments, constant drug concentrations corresponding to full adherence (Cmin) did not lead to VB. Using Cmin concentrations for one week followed by constant Cmin-2 exposures for 4 weeks, DTG+3TC had VB and emergence of M184V/I in reverse transcriptase (RT) but there was no VB for BIC+FTC+TAF. Using alternating drug exposures of Cmin (weeks 1 and 3) and Cmin-2 or Cmin -4 (weeks 2, 4, and 5), VB was not observed with BIC+FTC+TAF, and VB was decreased or delayed with DTG+3TC compared to DTG+3TC held at Cmin-2 or Cmin-4. Resistance development was observed in some cultures with VB: 1 culture with BIC+FTC+TAF had G163R in IN and 19 cultures with DTG+3TC had INSTI and RT resistance including 10 with M184V/I. Table 1. Summary of Breakthrough Frequency and Resistance Development Conclusion BIC+FTC+TAF has high in vitro forgiveness and consistent protection against emergence of drug resistance during simulations of short lapses in adherence. Higher DTG+3TC exposure, whether constant or intermittent, was better at preventing or delaying VB than lower DTG+3TC exposures, but DTG+3TC was less forgiving than BIC+FTC+TAF. Prevention of viral replication and resistance development is necessary to maintain lifelong viral suppression, particularly in the real world where drug adherence is often imperfect. Disclosures Andrew Mulato, BS, MBA, Gilead Sciences, Inc. (Employee, Shareholder) Rima K. Acosta, BS, Gilead Sciences, Inc. (Employee, Shareholder) Stephen R. Yant, PhD, Gilead Sciences, Inc. (Employee, Shareholder) Tomas Cihlar, PhD, Gilead Sciences, Inc. (Employee, Shareholder) Kirsten L. White, PhD, Gilead Sciences, Inc. (Employee, Shareholder)


2010 ◽  
Vol 4 (03) ◽  
pp. 164-167 ◽  
Author(s):  
Carlos Hernan Rodriguez ◽  
Alejandra De Ambrosio ◽  
Milena Bajuk ◽  
Mariela Spinozzi ◽  
Marcela Nastro ◽  
...  

Background: Multidrug-resistant strains of Acinetobacter baumannii have been reported increasingly around the world. The administration of an association of antibiotics has been proposed to create an active combination and to prevent the emergence of resistance. Methodology: The activity of colistin, rifampicin, gentamicin, imipenem and their associations was evaluated by means of killing curves in fourteen isolates belonging to three endemic PFGE types, in a university hospital of Buenos Aires city. The 14 isolates were selected on the basis of different mechanisms responsible for resistance to carbapenems and different susceptibility to colistin. Results: The mechanism responsible for the resistance to imipenem was the production of OXA-23 and OXA-58 carbapenemases. Heteroresistance to colistin was observed in six isolates. The associations colistin-rifampicin and colistin-imipenem were synergistic in heteroresistant isolates and prevented the development of colistin-resistant mutants. The association imipenem-gentamicin was bactericidal in gentamicin susceptible isolates, whereas the association imipenem-rifampicin was always indifferent. Conclusion: The antimicrobial activity and the presence of synergy are related to the antimicrobials' susceptibilities irrespective of the PFGE type or the OXA-carbapenemase produced.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Ryan K. Shields ◽  
Ellen G. Kline ◽  
Kelley R. Healey ◽  
Milena Kordalewska ◽  
David S. Perlin ◽  
...  

ABSTRACT Echinocandins are front-line agents for treatment of invasive candidiasis. There are no reported agent-specific differences in Candida mutational frequency of resistance or propensity to develop FKS mutations. The objective of this study was to measure spontaneous and FKS mutation rates among Candida glabrata strains. Twenty bloodstream isolates from patients with or without prior echinocandin exposure were included. Minimum inhibitory concentrations (MICs), minimum fungicidal concentrations (MFCs), and mutation prevention concentrations were higher for caspofungin than for anidulafungin (P < 0.0001) and micafungin (P < 0.0001). Mutational frequencies of resistance at 3× the baseline MIC were highest for caspofungin and lowest for micafungin. A total of 247 isolates were recovered at or above the MFC for caspofungin (n = 159), anidulafungin (n = 74), or micafungin (n = 14). Agent-specific MIC increases were noted for anidulafungin and caspofungin, but not micafungin. Thirty-three percent of isolates harbored hot spot mutations in FKS1 (n = 6) or FKS2 (n = 76). Mutations at the Ser629 (Fks1) or Ser663 (Fks2) loci were more common after selection with anidulafungin or micafungin than with caspofungin (P = 0.003). Four isolates demonstrated >4-fold increases in MICs without FKS hot spot mutations; three of these harbored Fks2 mutations upstream of hot spot 1. The final isolate was FKS1 and FKS2 wild-type, but the 50% inhibitory concentrations of caspofungin and micafungin were increased 2.7- and 8-fold, respectively. In conclusion, micafungin may be superior in vitro to the other agents in limiting the emergence of resistance among C. glabrata. Caspofungin exposure may be most likely to promote resistance development. These data provide a foundation for future investigations of newly developed echinocandin agents.


2019 ◽  
Vol 74 (9) ◽  
pp. 2631-2639 ◽  
Author(s):  
Brian M Luna ◽  
Ksenia Ershova ◽  
Jun Yan ◽  
Amber Ulhaq ◽  
Travis B Nielsen ◽  
...  

AbstractBackgroundNew strategies are needed to slow the emergence of antibiotic resistance among bacterial pathogens. In particular, society is experiencing a crisis of antibiotic-resistant infections caused by Gram-negative bacterial pathogens and novel therapeutics are desperately needed to combat such diseases. Acquisition of iron from the host is a nearly universal requirement for microbial pathogens—including Gram-negative bacteria—to cause infection. We have previously reported that apo-transferrin (lacking iron) can inhibit the growth of Staphylococcus aureus in culture and diminish emergence of resistance to rifampicin.ObjectivesTo define the potential of apo-transferrin to inhibit in vitro growth of Klebsiella pneumoniae and Acinetobacter baumannii, key Gram-negative pathogens, and to reduce emergence of resistance to antibiotics.MethodsThe efficacy of apo-transferrin alone or in combination with meropenem or ciprofloxacin against K. pneumoniae and A. baumannii clinical isolates was tested by MIC assay, time–kill assay and assays for the selection of resistant mutants.ResultsWe confirmed that apo-transferrin had detectable MICs for all strains tested of both pathogens. Apo-transferrin mediated an additive antimicrobial effect for both antibiotics against multiple strains in time–kill assays. Finally, adding apo-transferrin to ciprofloxacin or meropenem reduced the emergence of resistant mutants during 20 day serial passaging of both species.ConclusionsThese results suggest that apo-transferrin may have promise to suppress the emergence of antibiotic-resistant mutants when treating infections caused by Gram-negative bacteria.


Author(s):  
Daria Monaldi ◽  
Dante Rotili ◽  
Julien Lancelot ◽  
Martin Marek ◽  
Nathalie Wössner ◽  
...  

The only drug for treatment of Schistosomiasis is Praziquantel, and the possible emergence of resistance makes research on novel therapeutic agents necessary. Targeting of Schistosoma mansoni epigenetic enzymes, which regulate the parasitic life cycle, emerged as promising approach. Due to the strong effects of human Sirtuin inhibitors on parasite survival and reproduction, Schistosoma sirtuins were postulated as therapeutic targets. In vitro testing of synthetic substrates of S. mansoni Sirtuin 2 (SmSirt2) and kinetic experiments on a myristoylated peptide demonstrated lysine long chain deacylation as an intrinsic SmSirt2 activity for the first time. Focused in vitro screening of the GSK Kinetobox library and structure-activity relationships (SAR) of identified hits, led to the first SmSirt2 inhibitors with activity in the low micromolar range. Several SmSirt2 inhibitors showed potency against both larval schistosomes (viability) and adult worms (pairing, egg laying) in culture without general toxicity to human cancer cells.<br>


Sign in / Sign up

Export Citation Format

Share Document