haloferax mediterranei
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 34)

H-INDEX

31
(FIVE YEARS 3)

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Ke Wang ◽  
Alex Michael Hobby ◽  
Yike Chen ◽  
Allan Chio ◽  
Bryan Martin Jenkins ◽  
...  

Polyhydroxyalkanoates (PHA) are a family of biodegradable plastics used as an ecofriendly alternative for conventional plastics in various applications. In this study, an industrial-scale PHA production system was designed and analyzed for the material flows and economics with the use of SuperPro Designer. Haloferax mediterranei was utilized to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Byproduct streams from a local cheese plant, with an input of 168.7 metric ton/day (MT/day) lactose, were used as the feedstock. Three scenarios with different processes for the treatments of used enzyme and spent medium were investigated and the major factors that influence the overall economics were identified. The simulated system produces 9700 MT/year PHBV with a yield of 0.2 g PHBV/g lactose and an overall process efficiency of 87%. The breakeven price was found to be more sensitive to the lactose price than enzyme price. The scenario with enzyme reuse and spent medium recycling achieved the lowest breakeven price among others, which can be less than 4 $/kg PHA based on the delactosed permeate (DLP) unit price. The study suggests utilizing dairy derived feedstocks has the potential to make PHA competitive in the bioplastic market, which could be beneficial to both dairy and bioplastic industries.


2021 ◽  
Vol 105 (18) ◽  
pp. 6679-6689
Author(s):  
Shun Sato ◽  
Kotaro Ino ◽  
Kazunori Ushimaru ◽  
Keisuke Wada ◽  
Azusa Saika ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lin Lin ◽  
Junyu Chen ◽  
Ruchira Mitra ◽  
Quanxiu Gao ◽  
Feiyue Cheng ◽  
...  

AbstractThe haloarchaeon Haloferax mediterranei is a potential strain for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production, yet the production yield and cost are the major obstacles hindering the use of this archaeal strain. Leveraging the endogenous type I-B CRISPR-Cas system in H. mediterranei, we develop a CRISPR-based interference (CRISPRi) approach that allows to regulate the metabolic pathways related to PHBV synthesis, thereby enhancing PHBV production. Our CRISPRi approach can downregulate the gene expression in a range of 25% to 98% depending upon the target region. Importantly, plasmid-mediated CRISPRi downregulation on the citrate synthase genes (citZ and gltA) improves the PHBV accumulation by 76.4% (from 1.78 to 3.14 g/L). When crRNA cassette integrated into chromosome, this further shortens the PHBV fermentation period and enhances PHA productivity by 165%. Our transcriptome analysis shows that repression of citrate synthase genes redirects metabolic flux from the central metabolic pathways to PHBV synthesis pathway. These findings demonstrate that the CRISPRi-based gene regulation is a transformative toolkit for fine-tuning the endogenous metabolic pathways in the archaeal system, which can be applied to not only the biopolymer production but also many other applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1156
Author(s):  
Verónica Rodríguez-Herrero ◽  
Arnau Peris ◽  
Mónica Camacho ◽  
Vanesa Bautista ◽  
Julia Esclapez ◽  
...  

The genome of the halophilic archaea Haloferax mediterranei contains three ORFs that show homology with glutamine synthetase (GS) (glnA-1, glnA-2, and glnA-3). Previous studies have focused on the role of GlnA-1, suggesting that proteins GlnA-2 and GlnA-3 could play a different role to that of GS. Glutamine synthetase (EC 6.3.1.2) belongs to the class of ligases, including 20 subclasses of other different enzymes, such as aspartate–ammonia ligase (EC 6.3.1.1), glutamate–ethylamine ligase (EC 6.3.1.6), and glutamate–putrescine ligase (EC 6.3.1.11). The reaction catalyzed by glutamate–putrescine ligase is comparable to the reaction catalyzed by glutamine synthetase (GS). Both enzymes can bind a glutamate molecule to an amino group: ammonium (GS) or putrescine (glutamate–putrescine ligase). In addition, they present the characteristic catalytic domain of GS, showing significant similarities in their structure. Although these proteins are annotated as GS, the bioinformatics and experimental results obtained in this work indicate that the GlnA-2 protein (HFX_1688) is a glutamate–putrescine ligase, involved in polyamine catabolism. The most significant results are those related to glutamate–putrescine ligase’s activity and the analysis of the transcriptional and translational expression of the glnA-2 gene in the presence of different nitrogen sources. This work confirms a new metabolic pathway in the Archaea domain which extends the knowledge regarding the utilization of alternative nitrogen sources in this domain.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1043
Author(s):  
Eric Bernabeu ◽  
Jose María Miralles-Robledillo ◽  
Micaela Giani ◽  
Elena Valdés ◽  
Rosa María Martínez-Espinosa ◽  
...  

During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 802
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
María-José García-Bonete ◽  
Belén Esquerra ◽  
Basilio Zafrilla ◽  
...  

Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1582
Author(s):  
Verónica Cánovas ◽  
Salvador Garcia-Chumillas ◽  
Fuensanta Monzó ◽  
Lorena Simó-Cabrera ◽  
Carmen Fernández-Ayuso ◽  
...  

Haloferaxmediterranei is a haloarchaeon of high interest in biotechnology because it produces and mobilizes intracellular polyhydroxyalkanoate (PHA) granules during growth under stress conditions (limitation of phosphorous in the culture media), among other interesting metabolites (enzymes, carotenoids, etc.). The capability of PHA production by microbes can be monitored with the use of staining-based methods. However, the staining of haloarchaea cells is a challenging task; firstly, due to the high ionic strength of the medium, which is inappropriate for most of dyes, and secondly, due to the low permeability of the haloarchaea S-layer to macromolecules. In this work, Haloferax mediterranei is used as a halophilic archaeon model to describe an optimized protocol for the visualization and analysis of intracellular PHA granules in living cells. The method is based on double-fluorescence staining using Nile red and SYBR Green by confocal fluorescence microscopy. Thanks to this method, the capability of PHA production by new haloarchaea isolates could be easily monitored.


Biochimie ◽  
2021 ◽  
Author(s):  
Gloria Payá ◽  
Vanesa Bautista ◽  
Mónica Camacho ◽  
María-José Bonete ◽  
Julia Esclapez

Sign in / Sign up

Export Citation Format

Share Document