scholarly journals Prior Compensation Algorithm for Cerenkov Luminescence Tomography From Single-View Measurements

2021 ◽  
Vol 11 ◽  
Author(s):  
Lin Wang ◽  
Xiaowei He ◽  
Jingjing Yu

Cerenkov luminescence tomography (CLT) has attracted much attention because of the wide clinically-used probes and three-dimensional (3D) quantification ability. However, due to the serious morbidity of 3D optical imaging, the reconstructed images of CLT are not appreciable, especially when single-view measurements are used. Single-view CLT improves the efficiency of data acquisition. It is much consistent with the actual imaging environment of using commercial imaging system, but bringing the problem that the reconstructed results will be closer to the animal surface on the side where the single-view image is collected. To avoid this problem to the greatest extent possible, we proposed a prior compensation algorithm for CLT reconstruction based on depth calibration strategy. This method takes full account of the fact that the attenuation of light in the tissue will depend heavily on the depth of the light source as well as the distance between the light source and the detection plane. Based on this consideration, a depth calibration matrix was designed to calibrate the attenuation between the surface light flux and the density of the internal light source. The feature of the algorithm was that the depth calibration matrix directly acts on the system matrix of CLT reconstruction, rather than modifying the regularization penalty items. The validity and effectiveness of the proposed algorithm were evaluated with a numerical simulation and a mouse-based experiment, whose results illustrated that it located the radiation sources accurately by using single-view measurements.

2001 ◽  
Vol 40 (Part 1, No. 8) ◽  
pp. 4913-4915 ◽  
Author(s):  
Sung-Sik Kim ◽  
Kwang-Hoon Sohn ◽  
Vladimir Savaljev ◽  
Eugene F. Pen ◽  
Jung-Young Son ◽  
...  

2018 ◽  
Vol 89 (6) ◽  
pp. 063108
Author(s):  
Wenze Xia ◽  
Yayun Ma ◽  
Shaokun Han ◽  
Yulin Wang ◽  
Fei Liu ◽  
...  

Author(s):  
Craig A. Snoeyink ◽  
Gordon Christopher ◽  
Sourav Barman ◽  
Steve Wereley

Here we present an optical measurement technique and image analysis process capable of tracking particles in three dimensions with a single point of view. In addition to single view 3D-PTV, the optical system is capable of tracking individual particles even at particle-particle spacings that are closer then the diffraction limit of the base imaging system. The measurement system, termed Bessel Beam Microscopy (BBM), functions as an attachment for a microscope that fits between the microscope base and camera. The addition of the BBM attachment transforms the point spread function (PSF) of the microscope allowing two unique functions: single image superresolution imaging, and the extraction of three dimension location information of particles without calibration. The result is a fluid characterization tool with unique capabilities for velocimetry and characterization of the dynamics of dense fluid-particle suspensions.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Wu-zhou Li ◽  
Zhi-wen Liang ◽  
Yi Cao ◽  
Ting-ting Cao ◽  
Hong Quan ◽  
...  

Abstract Background Tumor motion may compromise the accuracy of liver stereotactic radiotherapy. In order to carry out a precise planning, estimating liver tumor motion during radiotherapy has received a lot of attention. Previous approach may have difficult to deal with image data corrupted by noise. The iterative closest point (ICP) algorithm is widely used for estimating the rigid registration of three-dimensional point sets when these data were dense or corrupted. In the light of this, our study estimated the three-dimensional (3D) rigid motion of liver tumors during stereotactic liver radiotherapy using reconstructed 3D coordinates of fiducials based on the ICP algorithm. Methods Four hundred ninety-five pairs of orthogonal kilovoltage (KV) images from the CyberKnife stereo imaging system for 12 patients were used in this study. For each pair of images, the 3D coordinates of fiducial markers inside the liver were calculated via geometric derivations. The 3D coordinates were used to calculate the real-time translational and rotational motion of liver tumors around three axes via an ICP algorithm. The residual error was also investigated both with and without rotational correction. Results The translational shifts of liver tumors in left-right (LR), anterior-posterior (AP),and superior-inferior (SI) directions were 2.92 ± 1.98 mm, 5.54 ± 3.12 mm, and 16.22 ± 5.86 mm, respectively; the rotational angles in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 3.95° ± 3.08°, 4.93° ± 2.90°, and 4.09° ± 1.99°, respectively. Rotational correction decreased 3D fiducial displacement from 1.19 ± 0.35 mm to 0.65 ± 0.24 mm (P<0.001). Conclusions The maximum translational movement occurred in the SI direction. Rotational correction decreased fiducial displacements and increased tumor tracking accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2858
Author(s):  
Kelly Ka-Lee Lai ◽  
Timothy Tin-Yan Lee ◽  
Michael Ka-Shing Lee ◽  
Joseph Chi-Ho Hui ◽  
Yong-Ping Zheng

To diagnose scoliosis, the standing radiograph with Cobb’s method is the gold standard for clinical practice. Recently, three-dimensional (3D) ultrasound imaging, which is radiation-free and inexpensive, has been demonstrated to be reliable for the assessment of scoliosis and validated by several groups. A portable 3D ultrasound system for scoliosis assessment is very much demanded, as it can further extend its potential applications for scoliosis screening, diagnosis, monitoring, treatment outcome measurement, and progress prediction. The aim of this study was to investigate the reliability of a newly developed portable 3D ultrasound imaging system, Scolioscan Air, for scoliosis assessment using coronal images it generated. The system was comprised of a handheld probe and tablet PC linking with a USB cable, and the probe further included a palm-sized ultrasound module together with a low-profile optical spatial sensor. A plastic phantom with three different angle structures built-in was used to evaluate the accuracy of measurement by positioning in 10 different orientations. Then, 19 volunteers with scoliosis (13F and 6M; Age: 13.6 ± 3.2 years) with different severity of scoliosis were assessed. Each subject underwent scanning by a commercially available 3D ultrasound imaging system, Scolioscan, and the portable 3D ultrasound imaging system, with the same posture on the same date. The spinal process angles (SPA) were measured in the coronal images formed by both systems and compared with each other. The angle phantom measurement showed the measured angles well agreed with the designed values, 59.7 ± 2.9 vs. 60 degrees, 40.8 ± 1.9 vs. 40 degrees, and 20.9 ± 2.1 vs. 20 degrees. For the subject tests, results demonstrated that there was a very good agreement between the angles obtained by the two systems, with a strong correlation (R2 = 0.78) for the 29 curves measured. The absolute difference between the two data sets was 2.9 ± 1.8 degrees. In addition, there was a small mean difference of 1.2 degrees, and the differences were symmetrically distributed around the mean difference according to the Bland–Altman test. Scolioscan Air was sufficiently comparable to Scolioscan in scoliosis assessment, overcoming the space limitation of Scolioscan and thus providing wider applications. Further studies involving a larger number of subjects are worthwhile to demonstrate its potential clinical values for the management of scoliosis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Angika Bulbul ◽  
Joseph Rosen

AbstractPartial aperture imaging system (PAIS) is a recently developed concept in which the traditional disc-shaped aperture is replaced by an aperture with a much smaller area and yet its imaging capabilities are comparable to the full aperture systems. Recently PAIS was demonstrated as an indirect incoherent digital three-dimensional imaging technique. Later it was successfully implemented in the study of the synthetic marginal aperture with revolving telescopes (SMART) to provide superresolution with subaperture area that was less than one percent of the area of the full synthetic disc-shaped aperture. In the study of SMART, the concept of PAIS was tested by placing eight coded phase reflectors along the boundary of the full synthetic aperture. In the current study, various improvements of PAIS are tested and its performance is compared with the other equivalent systems. Among the structural changes, we test ring-shaped eight coded phase subapertures with the same area as of the previous circular subapertures, distributed along the boundary of the full disc-shaped aperture. Another change in the current system is the use of coded phase mask with a point response of a sparse dot pattern. The third change is in the reconstruction process in which a nonlinear correlation with optimal parameters is implemented. With the improved image quality, the modified-PAIS can save weight and cost of imaging devices in general and of space telescopes in particular. Experimental results with reflective objects show that the concept of coded aperture extends the limits of classical imaging.


Sign in / Sign up

Export Citation Format

Share Document