elongator complex
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 22)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Elisabetta Morini ◽  
Dadi Gao ◽  
Emily M. Logan ◽  
Monica Salani ◽  
Aram J. Krauson ◽  
...  

Author(s):  
Sunwang Xu ◽  
Cen Jiang ◽  
Ruirong Lin ◽  
Xiaopeng Wang ◽  
Xiaoqiang Hu ◽  
...  

Abstract Background Gallbladder cancer (GBC) is known for its high malignancy and multidrug resistance. Previously, we uncovered that impaired integrity and stability of the elongator complex leads to GBC chemotherapy resistance, but whether its restoration can be an efficient therapeutic strategy for GBC remains unknown. Methods RT-qPCR, MS-qPCR and ChIP-qPCR were used to evaluate the direct association between ELP5 transcription and DNA methylation in tumour and non-tumour tissues of GBC. EMSA, chromatin accessibility assays, and luciferase assays were utilized to analysis the DNA methylation in interfering PAX5-DNA interactions. The functional experiments in vitro and in vivo were performed to investigate the effects of DNA demethylating agent decitabine (DAC) on the transcription activation of elongator complex and the enhanced sensitivity of gemcitabine in GBC cells. Tissue microarray contains GBC tumour tissues was used to evaluate the association between the expression of ELP5, DNMT3A and PAX5. Results We demonstrated that transcriptional repression of ELP5 in GBC was highly correlated with hypermethylation of the promoter. Mechanistically, epigenetic analysis revealed that DNA methyltransferase DNMT3A-catalysed hypermethylation blocked transcription factor PAX5 activation of ELP5 by disrupting PAX5-DNA interaction, resulting in repressed ELP5 transcription. Pharmacologically, the DNA demethylating agent DAC eliminated the hypermethylated CpG dinucleotides in the ELP5 promoter and then facilitated PAX5 binding and reactivated ELP5 transcription, leading to the enhanced function of the elongator complex. To target this mechanism, we employed a sequential combination therapy of DAC and gemcitabine to sensitize GBC cells to gemcitabine-therapy through epigenetic activation of the elongator complex. Conclusions Our findings suggest that ELP5 expression in GBC is controlled by DNA methylation-sensitive induction of PAX5. The sequential combination therapy of DAC and gemcitabine could be an efficient therapeutic strategy to overcome chemotherapy resistance in GBC.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2275-2275
Author(s):  
Neeraj K Aryal ◽  
Anjana Sundarrajan ◽  
Scott Boiko ◽  
David Jenkins ◽  
Huayang Liu ◽  
...  

Abstract Evasion of apoptosis is a hallmark of cancer wherein overexpression and amplification of pro-survival BCL2-family genes like MCL1 is a common observation. MCL1 is frequently amplified in many hematological cancers like Multiple Myeloma (MM) that depend on it for survival. BH3 mimetic drugs, like the BCL2-specific inhibitor Venetoclax, have been successfully used in the clinic to treat certain cancers, and MCL1-selective inhibitors are currently in clinical development. While inhibition of MCL1 displays promising preclinical activity, many cancer models display acquired or intrinsic resistance to MCL1 inhibitors (MCL1i). As MCL1-targeted therapies progress clinically, understanding mechanisms that lead to resistance will be important to not only identify therapeutically-exploitable targets to combat resistance, but to also determine if these biomarkers could stratify patients most likely to respond to an MCL1i. Here, we used a genome-wide CRISPR knock-out screen to identify mechanisms of resistance to MCL1i AZD5991 in two MM cell lines, KMS11 and KMS34. We used a sgRNA library consisting of about 118,000 sgRNAs (~6 sgRNAs/gene), and treated the cells with DMSO or 1uM AZD5991 for 16 days (5 doublings). We identified 316 genes in KMS11 and 184 genes in KMS34 with >4-fold enrichment of sgRNAs; and 221 genes with >2-fold enrichment of sgRNAs in both cell lines. The sgRNAs targeting BAK and BAX were the most enriched overlapping hits. Using GSEA analysis of the 221 common genes with enriched sgRNAs, we discovered that the tRNA wobble uridine modification as the most enriched pathway. The tRNA U34 mcm5s2 modification is catalyzed by the elongator complex ELP1-6 and cytosolic thiouridylase CTU1/2. Each subunit of the elongator complex is essential for its function and loss of any subunit results in destabilization of the complex. By knocking out ELP4 in five MM cell lines (KMS11, KMS34, KMS12-PE, MM.1S, and RPMI-8226), we first validated the destabilization of the complex by showing a robust decrease in the protein levels of ELP1 and ELP3 via western blot. As the elongator complex has additional functions, we also knocked-out tRNA U34 modification pathway specific CTU1 in KMS11, KMS34, and KMS12-PE cells. We showed that genetic knock-out of ELP4 and CTU1 results in increased resistance to MCL1i in all cell lines tested. We observed the highest increase in MCL1i resistance upon ELP4-KO in KMS11 and RPMI-8226 cell lines. To understand the mechanism behind elongator complex mediated regulation of MCL1 dependency, we performed RNAseq and global proteomics in KMS11 cells (Parental, non-targeting control [NTC], ELP4-KO and CTU1-KO) and RPMI-8226 cells (Parental, NTC, and ELP4-KO). We show that the elongator complex is a regulator of IRE1-XBP1 axis of the ER stress response pathway; and knockout of IRE1 also results in MCL1i-resistance in KMS11 and RPMI8226 cell lines. Mechanistically, we show that loss of elongator complex-mediated downregulation of IRE1-XBP1 axis leads to stabilization of MCL1 and upregulation of BCL-XL and NOXA expression. We further show that upon treatment with MCL1i, KMS11-ELP4-KO cells have less disruption of MCL1:Bim complex and an increase in BCL-XL:Bim complex as compared with KMS11-NTC cells. The net increase in pro-survival MCL1 and BCL-XL proteins in ELP4-KO cells resulting in lower levels of unsequestered BIM upon AZD5991 treatment suggests a reduction in apoptotic priming. The mechanistic link between the elongator complex and ER stress response pathway led us to test ER stress inducing drugs in these cell lines. We observed that ELP4-KO results in increased resistance to proteasome inhibitor Bortezomib and other ER stress inducers like Tunicamycin, Thapsigargin, and BrefeldinA as a monotherapy or in combination with AZD5991. These data are consistent with our hypothesis that ELP4-KO cells have reduced apoptotic priming and are thus multi-drug resistant. As bortezomib is used in the clinic to treat MM patients, we asked if an elongator gene signature could be used to predict response to current therapies. We show that the elongator complex components could be used as a gene signature to stratify overall survival in MM patients (MMRF CoMMpass dataset). Moreover, ER stress response gene signature has been shown to be repressed in drug-resistant MM. Taken together, an integrated elongator and IRE-XBP1 gene signature could be a strong predictor of therapy response in MM . Disclosures Aryal: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Sundarrajan: AstraZeneca: Ended employment in the past 24 months. Boiko: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Jenkins: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Liu: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Ahdesmaki: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Bornot: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Jarnuczak: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Miele: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. McDermott: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Fawell: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Drew: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Boise: AbbVie/Genentech: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Honoraria, Research Funding. Cidado: AstraZeneca: Current Employment, Current equity holder in publicly-traded company.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna-Lisa Paul ◽  
Natasha Haveman ◽  
Brandon Califar ◽  
Robert J. Ferl

Background: Plants subjected to the novel environment of spaceflight show transcriptomic changes that resemble aspects of several terrestrial abiotic stress responses. Under investigation here is whether epigenetic modulations, similar to those that occur in terrestrial stress responses, have a functional role in spaceflight physiological adaptation. The Advanced Plant Experiment-04 – Epigenetic Expression experiment examined the role of cytosine methylation in spaceflight adaptation. The experiment was conducted onboard the International Space Station, and evaluated the spaceflight-altered, genome-wide methylation profiles of two methylation-regulating gene mutants [methyltransferase 1 (met1-7) and elongator complex subunit 2 (elp2-5)] along with a wild-type Col-0 control.Results: The elp2-5 plants suffered in their physiological adaptation to spaceflight in that their roots failed to extend away from the seed and the overall development of the plants was greatly impaired in space. The met1-7 plants suffered less, with their morphology affected by spaceflight in a manner similar to that of the Col-0 controls. The differentially expressed genes (DEGs) in spaceflight were dramatically different in the elp2-5 and met1-7 plants compared to Col-0, indicating that the disruptions in these mutants resulted in a reprogramming of their spaceflight responses, especially in elp2-5. Many of the genes comprising the spaceflight transcriptome of each genotype were differentially methylated in spaceflight. In Col-0 the majority of the DEGs were representative of the now familiar spaceflight response, which includes genes associated with cell wall remodeling, pathogen responses and ROS signaling. However, the spaceflight transcriptomes of met1-7 and elp2-5 each presented patterns of DEGs that are almost completely different than Col-0, and to each other. Further, the DEGs of the mutant genotypes suggest a more severe spaceflight stress response in the mutants, particularly in elp2-5.Conclusion: Arabidopsis physiological adaptation to spaceflight results in differential DNA methylation in an organ-specific manner. Disruption of Met1 methyltransferase function does not dramatically affect spaceflight growth or morphology, yet met1-7 reprograms the spaceflight transcriptomic response in a unique manner. Disruption of elp2-5 results in poor development in spaceflight grown plants, together with a diminished, dramatically reprogrammed transcriptomic response.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marija Kojic ◽  
Tomasz Gawda ◽  
Monika Gaik ◽  
Alexander Begg ◽  
Anna Salerno-Kochan ◽  
...  

AbstractIntellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.


2021 ◽  
Author(s):  
Elisabetta Morini ◽  
Dadi Gao ◽  
Emily M. Logan ◽  
Monica Salani ◽  
Aram J. Krauson ◽  
...  

Elongator is a highly conserved protein complex required for transcriptional elongation, intracellular transport and translation. Elongator complex protein 1 (ELP1) is the scaffolding protein of Elongator and is essential for its assembly and stability. Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by a mutation in ELP1 that lead to a tissue-specific reduction of ELP1 protein. Our work to generate a phenotypic mouse model for FD led to the discovery that homozygous deletion of the mouse Elp1 gene leads to embryonic lethality prior to mid-gestation. Given that FD is caused by a reduction, not loss, of ELP1, we generated two new mouse models by introducing different copy numbers of the human FD ELP1 transgene into the Elp1 knockout mouse (Elp1-/-) and observed that human ELP1 expression rescues embryonic development in a dose dependent manner. We then conducted a comprehensive transcriptome analysis in mouse embryos to identify genes and pathways whose expression correlates with the amount of ELP1. We found that ELP1 is essential for the expression of genes responsible for the formation and development of the nervous system. Further, gene length analysis of the differentially expressed genes showed that the loss of Elp1 mainly impacts the expression of long genes and that by gradually restoring Elongator their expression is progressively rescued. Finally, through evaluation of co-expression modules, we identified gene sets with unique expression patterns that depended on ELP1 expression. Overall, this study highlights the crucial role of ELP1 during early embryonic neuronal development and reveals gene networks and biological pathways that are regulated by Elongator.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii392-iii393
Author(s):  
Giles W Robinson ◽  
Sebastian M Waszak ◽  
Brian L Gudenas ◽  
Kyle S Smith ◽  
Antoine Forget ◽  
...  

Abstract BACKGROUND Our previous analysis of established cancer predisposition genes in medulloblastoma (MB) identified pathogenic germline variants in ~5% of all patients. Here, we extended our analysis to include all protein-coding genes. METHODS Case-control analysis performed on 795 MB patients against >118,000 cancer-free children and adults was performed to identify an association between rare germline variants and MB. RESULTS Germline loss-of-function variants of Elongator Complex Protein 1 (ELP1; 9q31.3) were strongly associated with SHH subgroup (MBSHH). ELP1-associated-MBs accounted for ~15% (29/202) of pediatric MBSHH cases and were restricted to the SHHα subtype. ELP1-associated-MBs demonstrated biallelic inactivation of ELP1 due to somatic chromosome 9q loss and most tumors exhibited co-occurring somatic PTCH1 (9q22.32) alterations. Inheritance was verified by parent-offspring sequencing (n=3) and pedigree analysis identified two families with a history of pediatric MB. ELP1-associated-MBSHH were characterized by desmoplastic/nodular histology (76%; 13/17) and demonstrated a favorable clinical outcome when compared to TP53-associated-MBSHH (5-yr OS 92% vs 20%; p-value=1.3e-6) despite both belonging to the SHHα subtype. ELP1 is a subunit of the Elongator complex, that promotes efficient translational elongation through tRNA modifications at the wobble (U34) position. Biochemical, transcriptional, and proteomic analyses revealed ELP1-associated-MBs exhibit destabilization of the core Elongator complex, loss of tRNA wobble modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response. CONCLUSIONS We identified ELP1 as the most common MB predisposition gene, increasing the total genetic predisposition for pediatric MBSHH to 40%. These results mark MBSHH as an overwhelmingly genetically-predisposed disease and implicate disruption of protein homeostasis in MBSHH development.


2020 ◽  
Vol 21 (21) ◽  
pp. 8209
Author(s):  
Nour-el-Hana Abbassi ◽  
Anna Biela ◽  
Sebastian Glatt ◽  
Ting-Yu Lin

Elp3, the catalytic subunit of the eukaryotic Elongator complex, is a lysine acetyltransferase that acetylates the C5 position of wobble-base uridines (U34) in transfer RNAs (tRNAs). This Elongator-dependent RNA acetylation of anticodon bases affects the ribosomal translation elongation rates and directly links acetyl-CoA metabolism to both protein synthesis rates and the proteome integrity. Of note, several human diseases, including various cancers and neurodegenerative disorders, correlate with the dysregulation of Elongator’s tRNA modification activity. In this review, we focus on recent findings regarding the structure of Elp3 and the role of acetyl-CoA during its unique modification reaction.


Sign in / Sign up

Export Citation Format

Share Document