riboflavin biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 18)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 6 (3(62)) ◽  
pp. 53-56
Author(s):  
Nataliia Stetsenko ◽  
Valentyna Polishchuk ◽  
Оlexiy Dugan

The object of the study is the riboflavin producer Eremothecium ashbyi Guilliermond 1935 VKPM F-340, the subject of the study is the regularities of riboflavin biosynthesis by the E. ashbyi F-340 strain under different cultivation conditions. Riboflavin is an important micronutrient that is a precursor of the coenzymes flavin mononucleotide and flavinadine dinucleotide, it is necessary for biochemical reactions in all living cells. Population growth and an increase in human needs for vitamin-fortified food and agricultural products is the reason for an increase in demand for riboflavin preparations. Considering this, it is important and economically beneficial to improve the technology for the production of vitamin B2. An important factor that affects the yield of the product is the nutrient medium. At present, the influence of agricultural waste on the biosynthesis of riboflavin is being actively studied in the world. However, not all of the studied types of raw materials are typical for the agriculture of this or that country. Therefore, in order to determine whether this direction of research is promising, it is important to check the effect on the biosynthetic activity of the riboflavin producer of the most common wastes of the domestic industry. In this work, this is done on the example of Ukraine. In the course of the study, microbiological (surface and deep cultivation of E. ashbyi F-340), physicochemical (determination of the amount of biomass by the gravimetric method, determination of the concentration of riboflavin by the spectrophotometric method) and mathematical methods were used. The proposed media with the addition of agricultural waste, providing a higher yield of riboflavin compared to conventional media. The influence of different types of agricultural waste on the biosynthesis of riboflavin by the producer E. ashbyi F-340 was evaluated. The efficiency of using sunflower cake as a component of the nutrient medium is shown. The optimal sources of carbon for the nutrient medium with oil cake have been determined, which increases the yield of riboflavin. Due to the large amount of sunflower cake obtained in Ukraine, its use for modifying the nutrient medium in order to increase the yield of riboflavin in the future will lead to a decrease in the cost of the target product due to the use of cheap and ecological raw materials.


2021 ◽  
Author(s):  
Marie Buysse ◽  
Anna Maria Floriano ◽  
Yuval Gottlieb ◽  
Tiago Nardi ◽  
Francesco Comandatore ◽  
...  

Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick Hyalomma marginatum harbors a unique dual-partner nutritional system between an ancestral symbiont, Francisella, and a more recently acquired symbiont, Midichloria. Using metagenomics, we show that Francisella exhibits extensive genome erosion that endangers the nutritional symbiotic interactions: Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the Midichloria genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in H. marginatum, a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.


Author(s):  
Bin Yang ◽  
Yiwen Sun ◽  
Shouying Fu ◽  
Miaomiao Xia ◽  
Yuan Su ◽  
...  

Ribulose 5-phosphate (Ru5P) and guanosine 5′-triphosphate (GTP) are two key precursors of riboflavin, whereby Ru5P is also a precursor of GTP. Ribulose 5-phosphate 3-epimerase (Rpe) catalyzes the conversion of ribulose 5-phosphate into xylulose 5-phosphate. Inactivation of Rpe can reduce the consumption of Ru5P, enhancing the carbon flux toward riboflavin biosynthesis. Here we investigated the effect of mutation of rpe and other related genes on riboflavin production, physiological and metabolic phenotypes in Bacillus subtilis LY (BSLY). Introducing single nucleotide deletion (generated BSR) or nonsense mutation (generated BSRN) on the genomic copy of rpe, resulting in more than fivefold increase of riboflavin production over the parental strain. BSR process 62% Rpe activity, while BSRN lost the entire Rpe activity and had a growth defect compared with the parent strain. BSR and BSRN exhibited increases of the inosine and guanine titers, in addition, BSRN exhibited an increase of inosine 5′-monophosphate titer in fermentation. The transcription levels of most oxidative pentose phosphate pathway and purine synthesis genes were unchanged in BSR, except for the levels of zwf and ndk, which were higher than in BSLY. The production of riboflavin was increased to 479.90 ± 33.21 mg/L when ribA was overexpressed in BSR. The overexpression of zwf, gntZ, prs, and purF also enhanced the riboflavin production. Finally, overexpression of the rib operon by the pMX45 plasmid and mutant gnd by pHP03 plasmid in BSR led to a 3.05-fold increase of the riboflavin production (977.29 ± 63.44 mg/L), showing the potential for further engineering of this strain.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4506
Author(s):  
Sunjoo Lim ◽  
Eugeney Oh ◽  
Miae Choi ◽  
Euiho Lee ◽  
Chan-Yong Lee

Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. The pRFN4 plasmid, which contains the riboflavin synthesis genes from Bacillus subtilis, was originally designed for overproduction of the fluorescent ligand of 6,7-dimethyl 8-ribityllumazine. To provide the basis for a biosensor based on the lux gene from bioluminescent bacteria of Photobacterium leiognathi, the gene coding for N-terminal domain half of the lumazine protein extending to amino acid 112 (N-LumP) and the gene for whole lumazine protein (W-LumP) from P. leiognathi were introduced by polymerase chain reaction (PCR) and ligated into pRFN4 vector, to construct the recombinant plasmids of N-lumP-pRFN4 and W-lumP-pRFN4 as well as their modified plasmids by insertion of the lux promoter. The expression of the genes in the recombinant plasmids was checked in various Escherichia coli strains, and the fluorescence intensity in Escherichia coli 43R can even be observed in a single cell. These results concerning the co-expression of the genes coding for lumazine protein and for riboflavin synthesis raise the possibility to generate fluorescent bacteria which can be used in the field of bio-imaging.


IUCrJ ◽  
2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Sheng-Chia Chen ◽  
Li-Ci Ye ◽  
Te-Ming Yen ◽  
Ruei-Xin Zhu ◽  
Cheng-Yu Li ◽  
...  

Riboflavin serves as the direct precursor of the FAD/FMN coenzymes and is biosynthesized in most prokaryotes, fungi and plants. Fungal Rib2 possesses a deaminase domain for deamination of pyrimidine in the third step of riboflavin biosynthesis. Here, four high-resolution crystal structures of a Rib2 deaminase from Aspergillus oryzae (AoRib2) are reported which display three distinct occluded, open and complex forms that are involved in substrate binding and catalysis. In addition to the deaminase domain, AoRib2 contains a unique C-terminal segment which is rich in charged residues. Deletion of this unique segment has no effect on either enzyme activity or protein stability. Nevertheless, the C-terminal αF helix preceding the segment plays a role in maintaining protein stability and activity. Unexpectedly, AoRib2 is the first mononucleotide deaminase found to exist as a monomer, perhaps due to the assistance of its unique longer loops (Lβ1–β2, LαB–β3 and LαC–β4). These results form the basis for a molecular understanding of riboflavin biosynthesis in fungi and might assist in the development of antibiotics.


Engineering ◽  
2021 ◽  
Author(s):  
Jia-Rong Zhang ◽  
Ying-Ying Ge ◽  
Pin-He Liu ◽  
Ding-Tao Wu ◽  
Hong-Yan Liu ◽  
...  

Author(s):  
Matthias Eberl ◽  
Eric Oldfield ◽  
Thomas Herrmann

Abstract Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of ‘immuno-antibiotics’: combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matthew D. Edmans ◽  
Timothy K. Connelley ◽  
Siddharth Jayaraman ◽  
Christina Vrettou ◽  
Martin Vordermeier ◽  
...  

Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells that utilize a semi-invariant T cell receptor (TCR) α chain and are restricted by the highly conserved antigen presenting molecule MR1. MR1 presents microbial riboflavin biosynthesis derived metabolites produced by bacteria and fungi. Consistent with their ability to sense ligands derived from bacterial sources, MAIT cells have been associated with the immune response to a variety of bacterial infections, such as Mycobacterium spp., Salmonella spp. and Escherichia coli. To date, MAIT cells have been studied in humans, non-human primates and mice. However, they have only been putatively identified in cattle by PCR based methods; no phenotypic or functional analyses have been performed. Here, we identified a MAIT cell population in cattle utilizing MR1 tetramers and high-throughput TCR sequencing. Phenotypic analysis of cattle MAIT cells revealed features highly analogous to those of MAIT cells in humans and mice, including expression of an orthologous TRAV1-TRAJ33 TCR α chain, an effector memory phenotype irrespective of tissue localization, and expression of the transcription factors PLZF and EOMES. We determined the frequency of MAIT cells in peripheral blood and multiple tissues, finding that cattle MAIT cells are enriched in mucosal tissues as well as in the mesenteric lymph node. Cattle MAIT cells were responsive to stimulation by 5-OP-RU and riboflavin biosynthesis competent bacteria in vitro. Furthermore, MAIT cells in milk increased in frequency in cows with mastitis. Following challenge with virulent Mycobacterium bovis, a causative agent of bovine tuberculosis and a zoonosis, peripheral blood MAIT cells expressed higher levels of perforin. Thus, MAIT cells are implicated in the immune response to two major bacterial infections in cattle. These data suggest that MAIT cells are functionally highly conserved and that cattle are an excellent large animal model to study the role of MAIT cells in important zoonotic infections.


2020 ◽  
pp. MPMI-07-20-0209
Author(s):  
Nico Nouwen ◽  
Jean-Francois Arrighi ◽  
Djamel Gully ◽  
Eric Giraud

Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent Aeschynomene spp. The Bradyrhizobium ORS285 ribBA gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the ribBA gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity. For this reason, we have renamed the annotated ribBA as ribBX. Because we were unable to identify other ribBA or ribA and ribB homologs in the genome of Bradyrhizobium ORS285, we hypothesize that the ORS285 strain can use unconventional enzymes or an alternative pathway for the initial steps of riboflavin biosynthesis. Inactivating ribBX has a drastic impact on the interaction of Bradyrhizobium ORS285 with many of the tested Aeschynomene spp. In these Aeschynomene spp., the ORS285 ribBX mutant is able to infect the plant host cells but the intracellular infection is not maintained and the nodules senesce early. This phenotype can be complemented by reintroduction of the 3,4-DHBP synthase domain alone. Our results indicate that, in Bradyrhizobium ORS285, the RibBX protein is not essential for riboflavin biosynthesis under free-living conditions and we hypothesize that its activity is needed to sustain riboflavin biosynthesis under certain symbiotic conditions. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2020 ◽  
Author(s):  
Matthew D. Edmans ◽  
Timothy K. Connelley ◽  
Siddharth Jayaraman ◽  
Christina Vrettou ◽  
Martin Vordermeier ◽  
...  

AbstractMucosal-associated invariant T (MAIT) cells are a population of innate-like T cells that utilise a semi-invariant T cell receptor (TCR) α chain and are restricted by the highly conserved antigen presenting molecule MR1. MR1 presents microbial riboflavin biosynthesis derived metabolites produced by bacteria and fungi. Consistent with their ability to sense ligands derived from bacterial sources, MAIT cells have been associated with the immune response to a variety of bacterial infections, such as Mycobacterium spp., Salmonella spp. and Escherichia coli. To date, MAIT cells have been studied in humans, non-human primates and mice. However, they have only been putatively identified in cattle by PCR based methods; no phenotypic or functional analyses have been performed. Here, we identified a MAIT cell population in cattle utilising MR1 tetramers and high-throughput TCR sequencing. Phenotypic analysis of cattle MAIT cells revealed features highly analogous to those of MAIT cells in humans and mice, including expression of an orthologous TRAV1-TRAJ33 TCR α chain, an effector memory phenotype irrespective of tissue localisation, and expression of the transcription factors PLZF and EOMES. We determined the frequency of MAIT cells in peripheral blood and multiple tissues, finding that cattle MAIT cells are enriched in mucosal tissues as well as in the mesenteric lymph node. Cattle MAIT cells were responsive to stimulation by 5-OP-RU and riboflavin biosynthesis competent bacteria in vitro. Furthermore, MAIT cells in milk increased in frequency in cows with mastitis. Following challenge with virulent Mycobacterium bovis, a causative agent of bovine tuberculosis and a zoonosis, peripheral blood MAIT cells expressed higher levels of perforin. Thus MAIT cells are implicated in the immune response to two major bacterial infections in cattle. These data suggest that MAIT cells are functionally highly conserved and that cattle are an excellent large animal model to study the role of MAIT cells in important zoonotic infections.


Sign in / Sign up

Export Citation Format

Share Document