scholarly journals Bayesian Updating of Solar Panel Fragility Curves and Implications of Higher Panel Strength for Solar Generation Resilience

2022 ◽  
Author(s):  
Luis Ceferino ◽  
Ning Lin ◽  
Dazhi Xi

Solar generation can become a major and global source of clean energy by 2050. Nevertheless, few studies have assessed its resilience to extreme events, and none have used empirical data to characterize the fragility of solar panels. This paper develops fragility functions for rooftop and ground-mounted solar panels calibrated with solar panel structural performance data in the Caribbean for Hurricanes Irma and Maria in 2017 and Hurricane Dorian in 2019. After estimating hurricane wind fields, we follow a Bayesian approach to estimate fragility functions for rooftop and ground-mounted panels based on observations supplemented with existing numerical studies on solar panel vulnerability. Next, we apply the developed fragility functions to assess failure rates due to hurricane hazards in Miami-Dade, Florida, highlighting that panels perform below the code requirements, especially rooftop panels. We also illustrate that strength increases can improve the panels' structural performance effectively. However, strength increases by a factor of two still cannot meet the reliability stated in the code. Our results advocate reducing existing panel vulnerabilities to enhance resilience but also acknowledge that other strategies, e.g., using storage or deploying other generation sources, will likely be needed for energy security during storms.

2021 ◽  
Author(s):  
Luis Ceferino ◽  
Ning Lin ◽  
Dazhi Xi

Abstract The unprecedented growth of solar generation adoption indicates that solar can become a major source of modern and clean energy in just a few decades for our power grids. Despite solar's growing criticality for generation, few studies have proposed models to capture solar generation infrastructure's behavior during natural disasters. Here, we present an integrative methodology to quantify solar generation during hurricanes. The methodology is based on a stochastic model that combines a tropical cyclone hazard model, solar irradiance quantification, solar panel vulnerability, and a model for irradiance decay during hurricane conditions. The irradiance decay model is newly developed through mixed-effect regression on a dataset that merges historical Global Horizontal Irradiance and Atlantic hurricane activity. The proposed stochastic model can be integrated into large grid resilience's models for a wide range of detailed applications that require forecasting power system capacity during storms, such as contingency planning for extreme events. We use the stochastic model to analyze 21 states in the Eastern U.S. for various storms to showcase the methodology's broad applicability. Our results show that for events with return periods of up to 33 years, the loss in generation stems from cloud conditions during hurricanes. However, less frequent events can cause solar panel failure, especially in southern regions of the U.S., triggering complete loss of solar generation. Given that solar generation is expected to grow significantly, these results advocate for higher standards in the structural design of solar panels as well as the deployment of storage for disaster resilience.


Author(s):  
Birce Dikici ◽  
Javier Jalandoni

In this paper, experiments that can be introduced to Clean Energy Systems classes are described. The experiments investigate the effect of power characteristics (temperature, shade and tilt angle) on solar panel electricity production. Solar cell efficiency is the ratio of the electrical output of a solar cell to the incident energy in the form of sunlight. The energy conversion efficiency of a solar cell is the percentage of the solar energy to which the cell is exposed that is converted into electrical energy. Extreme temperatures can cause a decrease in solar panel’s power output and airstream can dissipate the heat and bring the solar panel to its normal operating condition. Solar panel efficiency is undesirably affected by heat and improved with introducing cooler medium. As well as heat, solar panel loses its power when a part of it is shaded by trees or surrounding buildings. Before solar panel systems are designed for homes, usually a detailed shading analysis of the roof is conducted to reveal its patterns of shade and sunlight throughout the year. By the same manner, how solar panels react to the direct and indirect rays from the sun in order to produce electricity is examined through experiments. Voltage, current and power flowing into a resistor are measured when the angle of the solar panel relative to the light source is changed. The tilt angles to the electrical measurements are linked to the differences in electrical generation. Students can perform experimental procedures explained here and gain the conceptual understanding of the Solar Energy better. The investigations require student explanation of the question, method, display of data with the critical response from peers.


2020 ◽  
Vol 9 (2) ◽  
pp. 141-149
Author(s):  
Abyan Arief Fernandez ◽  
Andrian Rakhmatsyah ◽  
Aulia Arif Wardana

This research aimed to build a solar tracker for a floating solar panel and used long–range (LoRa) communication to harvest energy and monitor its process. With the rising demand for renewable energy in these recent years especially for solar energy, it needs to meet this demand to remain relevant for the upcoming years where it will have an even larger impact as we shift into clean energy. Monitoring single–axis solar trackers on rural areas difficult and cost–intensive. The purpose of a floating solar farm is to reduce the cost from buying/renting land. Floating solar panels cannot be monitored using wired because they are moving nodes in the water, it makes wired installation complicated. Hence, using wireless sensornetwork is a solution that allowsremote monitoring of floating solar panels in rural areas and makes moving nodes mentioned above possible. Testing wasperformed by sending 100 packets from the node to its gateway using LoRa modulation, and the gateway successfully received about 90% of the packets sent by the node. The vertical single-axis solar tracker used in floating solar managed to get 17% more energy than the fixed solar with a more stable income for the whole duration of sending 100 packets.©2020. CBIORE-IJRED. All rights reserved


2021 ◽  
Vol 11 (4) ◽  
pp. 4456-4464
Author(s):  
S.V.G.V.A. Prasad

In recent years the use of solar energy is found to have grown by a large amount. Solar energy is renewable energy and the demand for it as clean energy shows its growth by nearly 50 percent in the past decade. It is estimated that the sun is able to generate energy within 24 hours that the entire population of the world could consume in 27 years. Solar power is the energy from the sun that is converted into thermal or electrical energy. The energy harnessed from the sun's rays is used for a variety of applications like electricity generation, to provide light for the interior environment, and many other domestic, commercial, and industrial purposes. Usage of fossil fuels for electricity production results in increased pollution and this mandates many governments to encourage moving to electricity generation using solar power. The large amount of solar energy that is available is found to be the most appealing source of electricity. Solar panels form a major part of the solar energy setup. Hence in this article let us review the various types of solar panels. This paper also deals with comparing the merits and demerits of the different types of solar panels that are available in the market. A section that presents the efficiency of the different kinds of the solar panel is also present in this paper. The role of temperature coefficient, fire rating, and hail rating in the performance of the solar panel is also addressed in this paper.


2021 ◽  
Vol 11 (2) ◽  
pp. 506
Author(s):  
Sun-Jin Han ◽  
Inwook Heo ◽  
Jae-Hyun Kim ◽  
Kang Su Kim ◽  
Young-Hun Oh

In this study, experiments and numerical analyses were carried out to examine the flexural and shear performance of a double composite wall (DCW) manufactured using a precast concrete (PC) method. One flexural specimen and three shear specimens were fabricated, and the effect of the bolts used for the assembly of the PC panels on the shear strength of the DCW was investigated. The failure mode, flexural and shear behavior, and composite behavior of the PC panel and cast-in-place (CIP) concrete were analyzed in detail, and the behavioral characteristics of the DCW were clearly identified by comparing the results of tests with those obtained from a non-linear flexural analysis and finite element analysis. Based on the test and analysis results, this study proposed a practical equation for reasonably estimating the shear strength of a DCW section composed of PC, CIP concrete, and bolts utilizing the current code equations.


2008 ◽  
Vol 136 (3) ◽  
pp. 833-864 ◽  
Author(s):  
Joannes J. Westerink ◽  
Richard A. Luettich ◽  
Jesse C. Feyen ◽  
John H. Atkinson ◽  
Clint Dawson ◽  
...  

Abstract Southern Louisiana is characterized by low-lying topography and an extensive network of sounds, bays, marshes, lakes, rivers, and inlets that permit widespread inundation during hurricanes. A basin- to channel-scale implementation of the Advanced Circulation (ADCIRC) unstructured grid hydrodynamic model has been developed that accurately simulates hurricane storm surge, tides, and river flow in this complex region. This is accomplished by defining a domain and computational resolution appropriate for the relevant processes, specifying realistic boundary conditions, and implementing accurate, robust, and highly parallel unstructured grid numerical algorithms. The model domain incorporates the western North Atlantic, the Gulf of Mexico, and the Caribbean Sea so that interactions between basins and the shelf are explicitly modeled and the boundary condition specification of tidal and hurricane processes can be readily defined at the deep water open boundary. The unstructured grid enables highly refined resolution of the complex overland region for modeling localized scales of flow while minimizing computational cost. Kinematic data assimilative or validated dynamic-modeled wind fields provide the hurricane wind and pressure field forcing. Wind fields are modified to incorporate directional boundary layer changes due to overland increases in surface roughness, reduction in effective land roughness due to inundation, and sheltering due to forested canopies. Validation of the model is achieved through hindcasts of Hurricanes Betsy and Andrew. A model skill assessment indicates that the computed peak storm surge height has a mean absolute error of 0.30 m.


2019 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Rizal Akbarudin Rahman ◽  
Aripriharta Aripriharta ◽  
Hari Putranto

The use of renewable energy as a source of electrical energyincreases every year. Unfortunately, Indonesia does not have manypower plants that utilize renewable energy sources. The mostpotential renewable energy in Indonesia is the sunlight with the helpof solar panels that converts solar energy into electrical energy.However, the environment could affect the solar panel module andin turn, affect the performance of solar panels or the generatedelectric energy. This research calculated the performance of solarpanels with a single-diode model using the Five Parameters methodthat required solar panel module specification data, the totalradiation absorbed by the solar panel module, and the temperatureof the environment. The Five Parameters method is a methodmodeled after solar panel module performance in the form of thesingle-diode equivalent circuit. The Five Parameters method isreliable in predicting the energy produced by the solar panels whenthe input data is limited. The results for using the Five Parametersin monocrystalline solar panels were Isc = 1.827 A, Imp = 0.662 A,Voc = 18.221 V, Vmp = 15.019 V, Pmp = 9.955 W. And the results inpolycrystalline solar panels were Isc = 1.926 A, Imp = 0.686 A, Voc =17.594 V, Vmp = 14.166 V, Pmp = 9.722 W. Based on the results; itwas concluded that the most efficient and optimised types of solarpanels on natural conditions in Sendang Biru Beach was themonocrystalline solar panel because it produced electrical outputpower of 9.955 W. Therefore, there could be a manufacturer ofsolar energy power plants to reduce the cost of electricity in thecoastal area, such as in Sendang Biru Beach.


SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 73 ◽  
Author(s):  
Hamzah Eteruddin ◽  
Atmam Atmam ◽  
David Setiawan ◽  
Yanuar Z. Arief

People can make solar energy alternative energy by employing solar panels to generate electricity. The utilization of solar energy on a solar panel to generate electricity is affected by the weather and the duration of the radiation, and they will affect the solar panel’s temperature. There are various types of solar panels that can be found on the market today, including Mono-Crystalline and Poly-Crystalline. The difference in the material used needs to be observed in terms of temperature changes in the solar module. Our study’s findings showed that a change in the temperature would impact the solar panel’s output voltage, and the solar panel’s output voltage would change when it was connected to the load although the measured temperatures were almost the same.


Author(s):  
A. YUNUS NASUTION ◽  
ADITYA PRATAMA

The initial problems of fishermen still use their semi-modern catches and still use ice cubes as a cooling medium, due to the lack of innovation in the development of the cooling media caught by fishermen. The implementation of solar panel energy is the beginning for the development of refrigerator power consumption caught by fishermen. The goal is to calculate the cooling load on the refrigerator, calculate the Coefficient of performance (COP) at the refrigerator and the loading factors at the refrigerator, where the average ambient temperature is 34 ℃ and the temperature to be achieved is 0℃, the fisherman results used in the study this is a shrimp with a capacity of 20 kg and the cooling time is 4 hours. Where the total cooling load value is 244.29 Watt, multiplied by 10% safety factor, so the overall cooling load is 268.72 Watts, refrigerant mass flow rate is 0.0012 Kg / s, the evaporator capacity is 261 Watt, compressor power is 15.6 Watt, The coefficient of performance (COP) value was 16.73 while for the refrigerant capacity was 0.074 Tons of refrigerant, the loading factors in the study were used to run a refrigerator with 80 Watt power for 4 hours, so that the total refrigerator load was 320 Wh (Watt hour) , to produce 320 Wh power is used 2 solar panel modules with a capacity of 50 Wp (Watt Peak), and uses a solar change controller (SCC) with a capacity of 10 A. The output power of the solar panel is influenced by the intensity of the sun's light emitted, from the test obtained an average value the average output of solar panels is 90.6 watts, while the total power generated in 11 test points is 536 watts, the type used is polycrystalline, solar panels battery and inverter capacity must be greater than the refrigerator power consumption, in this study used a 12V 35 Ah battery capacity and 500 Watt Inverter


2018 ◽  
Vol 6 (6) ◽  
pp. 161-177
Author(s):  
Abene Abderrahmane ◽  
Mohamed Salah Eddine Seddiki ◽  
Aurora Morocini Mohamed Si Youcef

The use of variable baffle solar panels for drying is the low level of heat exchange with the air in the dynamic vein of the solar panel. This weakness in such systems does not provide optimal performance or high thermal efficiency from their use. There is, however, a very noticeable improvement in heat transfer when the baffles are placed in rows in the ducts. To conduct the experiments, solar energy was simulated, the goal being to improve the relationship between temperature and thermal efficiency of a solar panel air heating plane and to use the system to reduce the time to gently dry the lemon to keep these vitamins. lemon and destinine for a sustainable therapy (the lemon promotes the absorption of calcium and in case of rhumet gill or five also to treat sinusitis, against migraine solair dryness and also for sustainable conservation and also for a sustainable medicine for a sustainable medicine.


Sign in / Sign up

Export Citation Format

Share Document