oyster ground
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 879-896 ◽  
Author(s):  
M. Haller ◽  
F. Janssen ◽  
J. Siddorn ◽  
W. Petersen ◽  
S. Dick

Abstract. For understanding and forecasting of hydrodynamics in coastal regions, numerical models have served as an important tool for many years. In order to assess the model performance, we compared simulations to observational data of water temperature and salinity. Observations were available from FerryBox transects in the southern North Sea and, additionally, from a fixed platform of the MARNET network. More detailed analyses have been made at three different stations, located off the English eastern coast, at the Oyster Ground and in the German Bight. FerryBoxes installed on ships of opportunity (SoO) provide high-frequency surface measurements along selected tracks on a regular basis. The results of two operational hydrodynamic models have been evaluated for two different time periods: BSHcmod v4 (January 2009 to April 2012) and FOAM AMM7 NEMO (April 2011 to April 2012). While they adequately simulate temperature, both models underestimate salinity, especially near the coast in the southern North Sea. Statistical errors differ between the two models and between the measured parameters. The root mean square error (RMSE) of water temperatures amounts to 0.72 °C (BSHcmod v4) and 0.44 °C (AMM7), while for salinity the performance of BSHcmod is slightly better (0.68 compared to 1.1). The study results reveal weaknesses in both models, in terms of variability, absolute levels and limited spatial resolution. Simulation of the transition zone between the coasts and the open sea is still a demanding task for operational modelling. Thus, FerryBox data, combined with other observations with differing temporal and spatial scales, can serve as an invaluable tool not only for model evaluation, but also for model optimization by assimilation of such high-frequency observations.


2015 ◽  
Vol 12 (1) ◽  
pp. 355-401
Author(s):  
M. Haller ◽  
F. Janssen ◽  
J. Siddorn ◽  
W. Petersen ◽  
S. Dick

Abstract. FerryBoxes installed on ships of opportunity (SoO) provide high-frequency surface biogeochemical measurements along selected tracks on a regular basis. Within the European FerryBox Community, several FerryBoxes are operated by different institutions. Here we present a comparison of model simulations applied to the North Sea with FerryBox temperature and salinity data from a transect along the southern North Sea and a more detailed analysis at three different positions located off the English East coast, at the Oyster Ground and in the German Bight. In addition to the FerryBox data, data from a Fixed Platform of the MARNET network are applied. Two operational hydrodynamic models have been evaluated for different time periods: results of BSHcmod v4 are analysed for 2009–2012, while simulations of FOAM AMM7 NEMO have been available from MyOcean data base for 2011 and 2012. The simulation of water temperatures is satisfying; however, limitations of the models exist, especially near the coast in the southern North Sea, where both models are underestimating salinity. Statistical errors differ between the models and the measured parameters, as the root mean square error (rmse) accounts for BSHcmod v4 to 0.92 K, for AMM7 only to 0.44 K. For salinity, BSHcmod is slightly better than AMM7 (0.98 and 1.1 psu, respectively). The study results reveal weaknesses of both models, in terms of variability, absolute levels and limited spatial resolution. In coastal areas, where the simulation of the transition zone between the coasts and the open ocean is still a demanding task for operational modelling, FerryBox data, combined with other observations with differing temporal and spatial scales serve as an invaluable tool for model evaluation and optimization. The optimization of hydrodynamical models with high frequency regional datasets, like the FerryBox data, is beneficial for their subsequent integration in ecosystem modelling.


Radiocarbon ◽  
2012 ◽  
Vol 54 (2) ◽  
pp. 165-186 ◽  
Author(s):  
James D Scourse ◽  
Alan D Wanamaker ◽  
Chris Weidman ◽  
Jan Heinemeier ◽  
Paula J Reimer ◽  
...  

Marine radiocarbon bomb-pulse time histories of annually resolved archives from temperate regions have been underexploited. We present here series of Δ14C excess from known-age annual increments of the long-lived bivalve molluskArctica islandicafrom 4 sites across the coastal North Atlantic (German Bight, North Sea; Troms⊘, north Norway; Siglufjordur, north Icelandic shelf; Grimsey, north Icelandic shelf) combined with published series from Georges Bank and Sable Bank (NW Atlantic) and the Oyster Ground (North Sea). The atmospheric bomb pulse is shown to be a step-function whose response in the marine environment is immediate but of smaller amplitude and which has a longer decay time as a result of the much larger marine carbon reservoir. Attenuation is determined by the regional hydrographic setting of the sites, vertical mixing, processes controlling the isotopic exchange of14C at the air-sea boundary,14C content of the freshwater flux, primary productivity, and the residence time of organic matter in the sediment mixed layer. The inventories form a sequence from high magnitude-early peak (German Bight) to low magnitude-late peak (Grimsey). All series show a rapid response to the increase in atmospheric Δ14C excess but a slow response to the subsequent decline resulting from the succession of rapid isotopic air-sea exchange followed by the more gradual isotopic equilibration in the mixed layer due to the variable marine carbon reservoir and incorporation of organic carbon from the sediment mixed layer. The data constitute calibration scries for the use of the bomb pulse as a high-resolution dating tool in the marine environment and as a tracer of coastal ocean water masses.


2009 ◽  
Vol 67 (2) ◽  
pp. 278-293 ◽  
Author(s):  
Henning Reiss ◽  
Steven Degraer ◽  
Gerard C. A. Duineveld ◽  
Ingrid Kröncke ◽  
John Aldridge ◽  
...  

Abstract Reiss, H., Degraer, S., Duineveld, G. C. A., Kröncke, I., Aldridge, J., Craeymeersch, J., Eggleton, J. D., Hillewaert, H., Lavaleye, M. S. S., Moll, A., Pohlmann, T., Rachor, E., Robertson, M., vanden Berghe, E., van Hoey, G., and Rees, H. L. 2010. Spatial patterns of infauna, epifauna, and demersal fish communities in the North Sea. – ICES Journal of Marine Science, 67: 278–293. Understanding the structure and interrelationships of North Sea benthic invertebrate and fish communities and their underlying environmental drivers is an important prerequisite for conservation and spatial ecosystem management on scales relevant to ecological processes. Datasets of North Sea infauna, epifauna, and demersal fish (1999–2002) were compiled and analysed to (i) identify and compare spatial patterns in community structure, and (ii) relate these to environmental variables. The multivariate analyses revealed significantly similar large-scale patterns in all three components with major distinctions between a southern community (Oyster Ground and German Bight), an eastern Channel and southern coastal community, and at least one northern community (>50 m deep). In contrast, species diversity patterns differed between the components with a diversity gradient for infauna and epifauna decreasing from north to south, and diversity hotspots of demersal fish, e.g. near the major inflows of Atlantic water. The large-scale hydrodynamic variables were the main drivers for the structuring of communities, whereas sediment characteristics appeared to be less influential, even for the infauna communities. The delineation of ecologically meaningful ecosystem management units in the North Sea might be based on the structure of the main faunal ecosystem components.


2009 ◽  
Vol 66 (10) ◽  
pp. 2233-2243 ◽  
Author(s):  
Hermann Neumann ◽  
Henning Reiss ◽  
Sebastian Rakers ◽  
Siegfried Ehrich ◽  
Ingrid Kröncke

Abstract Neumann, H., Reiss, H., Rakers, S., Ehrich, S., and Kröncke, I. 2009. Temporal variability in southern North Sea epifauna communities after the cold winter of 1995/1996. – ICES Journal of Marine Science, 66: 2233–2243. Epifauna communities in the southeastern North Sea were studied from 1998 to 2008 to evaluate the effect of hydroclimatic change in community structure. The spatial analysis revealed four communities along the West and North Frisian coasts, on the Oyster Ground, and on the Dogger Bank. The variability between communities was caused mainly by differing abundance of widespread species such as Asterias rubens, probably reflecting differences in environmental conditions, e.g. temperature variation and food supply. Community structure varied between 1998–2000 and 2003–2008 at the shallow West and North Frisian coasts. The hypothesis is that epibenthic communities in these areas were severely affected by the cold winter of 1995/1996, resulting in the outbreak of the opportunistic brittlestar Ophiura albida and followed by characteristic post-disturbance succession stages from 1998 to 2000. The period between 2003 and 2008 was characterized by a continuous decrease in O. albida and by an increase in other species and diversity in the coastal areas. In contrast, secondary production increased in all four areas after 2003, probably because of an increase in sea surface temperature (SST) and in the length of the warming season. We conclude that the cold winter affected epifauna mainly in shallow areas and that the increasing SST influenced the epifauna in the entire southeastern North Sea mainly through an increased food supply.


2004 ◽  
Vol 61 (6) ◽  
pp. 882-905 ◽  
Author(s):  
Henning Reiss ◽  
Ingrid Kröncke

Abstract Between November 2000 and May 2002, epibenthos was sampled monthly with a 2-m beam trawl at three stations along a transect from the southern German Bight towards the northeastern part of the Dogger Bank (North Sea) in order to investigate the seasonal variability of the epibenthic communities. The stations were chosen to reflect a gradient in the hydrigraphic regime, organic matter supply, and fishing effort. The epibenthic community of the southern German Bight was characterized by high biomass and abundance, dominated by Asterias rubens and Ophiura albida. In contrast, at the northern stations in the Oyster Ground and at the Dogger Bank, epibenthic biomass and abundance were substantially lower and the dominant species were mainly crustaceans such as Corystes cassivelaunus, Liocarcinus holsatus, and Pagurus bernhardus. In terms of seasonal variability, mean abundance and biomass in the southern German Bight showed highest values in the summer months and lowest values in the winter months. A similar pattern, but less distinct, was observed in the Oyster Ground. But at the Dogger Bank the pattern was different, with highest abundance and biomass values in the winter months. The differences in spatial and temporal patterns are discussed in relation to differences in temperature, thermal stratification and fishing effort at the three study sites.


Ophelia ◽  
1995 ◽  
Vol 42 (1) ◽  
pp. 257-288 ◽  
Author(s):  
J. C. H. Peeters ◽  
F. J. Los ◽  
R. Jansen ◽  
H. A. Haas ◽  
L. Peperzak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document