NMR Fluid Substitution–A New Method of Reconstructing T2 Distributions Under Primary Drainage and Imbibition Conditions

Author(s):  
Baoyan Li ◽  
◽  
Hasan Kesserwan ◽  
Gudong Jin ◽  
S. Mark Ma ◽  
...  

Most nuclear magnetic resonance (NMR)-based petrophysics models, such as pore structure characterization and permeability prediction, were developed using T2 distributions measured at fully water-saturated conditions (i.e., Sw = 1). The downhole implementation of those models across the hydrocarbon zones is disputable due to partial saturation (Sw < 1) conditions; hence, a correction to such effects on T2 distributions is required. This paper provides a critical review of the fluid substitution methods currently available in the industry and presents an improved method for enhanced formation evaluation. In the new method presented, an effective irreducible water saturation model is used to account for the pore structure and capillary pressure effects, which were barely considered by the currently available NMR fluid substitution methods. For water-wet reservoir rocks, the typical NMR T2 distribution at the partial saturation condition displays a clear separation between the wetting and nonwetting phases. The water phase can be classified as irreducible and movable fluid volumes. Then, using a T2 mapping relationship and a total porosity constraint, the T2 distribution of movable water at Sw < 1 is shifted and amplified to determine the T2 distribution of movable water at Sw = 1. To validate the new method, NMR measurements were conducted on sandstone samples at Sw = 1 as well as Sw < 1. The reconstructed T2 distribution at Sw = 1 was compared with the measured T2 distribution at Sw = 1. Results showed that the reconstructed T2 distribution matched very well with the T2 distribution measured at Sw = 1, confirming the robustness of the new technique. Parameters used in the reconstruction methodology are observed to be a good indicator of pore connectivity. During desaturation, the water T2 in large pores shifts to a shorter T2 because of the enhanced surface relaxation as the water volume decreases while the surface area remains constant. Therefore, the amplitude at the short T2 increases. The increased amplitude was remapped to large pores in reconstructing T2 spectra of full saturation.

2012 ◽  
Vol 170-173 ◽  
pp. 2924-2928
Author(s):  
Sheng Biao Chen ◽  
Yun Zhi Tan

In order to measure the water drainage volume in soil mechanical tests accurately, it develop a new method which is based on principles of optics. And from both physical and mathematic aspects, it deduces the mathematic relationship between micro change in displacement and the increment projected on screen. The result shows that total reflection condition is better than refraction condition. What’s more, the screen could show the water volume micro variation clearly, so it can improve the accuracy of measurement.


1955 ◽  
Vol 33 (2) ◽  
pp. 344-351 ◽  
Author(s):  
J. R. Dacey ◽  
D. G. Thomas

The pyrolysis at 300 °C. of vinylidene chloride monomer adsorbed on Saran charcoal alters the pore structure of the charcoal so that low boiling gases such as nitrogen are adsorbed slowly. The rates of adsorption of nitrogen, argon, and methane have been measured. They were found to vary with pressure and temperature, and from the temperature variation an activation energy may be calculated. A new method of determining this energy is described which involves changing the temperature during only one adsorption experiment.


ChemInform ◽  
1990 ◽  
Vol 21 (32) ◽  
Author(s):  
Y. TAKASU ◽  
K. SUZAWA ◽  
M. UENO ◽  
K. YAHIKOZAWA ◽  
H. HORIO ◽  
...  

Fuel ◽  
2021 ◽  
Vol 283 ◽  
pp. 119338
Author(s):  
Yang Zhao ◽  
Baiquan Lin ◽  
Ting Liu ◽  
Yuannan Zheng ◽  
Yong Sun ◽  
...  

2016 ◽  
Vol 56 (1) ◽  
pp. 1 ◽  
Author(s):  
Peter Behrenbruch ◽  
Chengzhi Yuan ◽  
Nhan B. Truong ◽  
Phil Do Huu ◽  
Tuan G. Hoang

Irreducible water saturation plays a significant role in estimating hydrocarbon initially-in-place and petroleum recovery. Yet, laboratory measurements for determining irreducible water saturation take considerable time and money. For this reason available data may not cover all requirements, giving rise to the practise of using correlations to fill in gaps. Described in this paper are the reasons for irreducible water saturation being an elusive parameter that not only depends on pore structure characteristics but also the type of experiment and laboratory procedures, as well as changing plug conditions during experimentation. This paper reviews traditional methods, as well as recent and novel approaches to quality assure laboratory data and for correlating irreducible water saturation for prediction. To gain insight into the dependence of irreducible water saturation on detailed pore structure characteristics, most notably grain size and sorting, the usefulness of global characteristics envelopes is explored (Behrenbruch and Biniwale, 2005). In this multidimensional plot, irreducible water saturation is plotted against porosity, permeability, hydraulic radius, porosity group, flow zone indicator (grain size) and sorting, giving an insightful overview of the interdependence of parameters. The second part of this paper compares novel correlations with commonly used correlations. Traditional and more recent correlations are covered, from simple correlations versus the logarithm of permeability to more sophisticated approaches using more variables, including porosity and others. Most notably, it is shown that an approach of correlating irreducible water saturation with grain size (or flow zone indicator [FZI]) and sorting shows great promise. Data from two Australian fields are used to demonstrate the methodology, showing a significant increase in fitting accuracy. This approach may eventually lead to a universal correlation.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 1930-1942 ◽  
Author(s):  
Huangye Chen ◽  
Zoya Heidari

Summary Complex pore geometry and composition, as well as anisotropic behavior and heterogeneity, can affect physical properties of rocks such as electrical resistivity and dielectric permittivity. The aforementioned physical properties are used to estimate in-situ petrophysical properties of the formation such as hydrocarbon saturation. In the application of conventional methods for interpretation of electrical-resistivity (e.g., Archie's equation and the dual-water model) and dielectric-permittivity measurements [e.g., complex refractive index model (CRIM)], the impacts of complex pore structure (e.g., kerogen porosity and intergranular pores), pyrite, and conductive mature kerogen have not been taken into account. These limitations cause significant uncertainty in estimates of water saturation. In this paper, we introduce a new method that combines interpretation of dielectric-permittivity and electrical-resistivity measurements to improve assessment of hydrocarbon saturation. The combined interpretation of dielectric-permittivity and electrical-resistivity measurements enables assimilating spatial distribution of rock components (e.g., pore, kerogen, and pyrite networks) in conventional models. We start with pore-scale numerical simulations of electrical resistivity and dielectric permittivity of fluid-bearing porous media to investigate the structure of pore and matrix constituents in these measurements. The inputs to these simulators are 3D pore-scale images. We then introduce an analytical model that combines resistivity and permittivity measurements to assess water-filled porosity and hydrocarbon saturation. We apply the new method to actual digital sandstones and synthetic digital organic-rich mudrock samples. The relative errors (compared with actual values estimated from image processing) in the estimate of water-filled porosity through our new method are all within the 10% range. In the case of digital sandstone samples, CRIM provided reasonable estimates of water-filled porosity, with only four out of twenty-one estimates beyond 10% relative error, with the maximum error of 30%. However, in the case of synthetic digital organic-rich mudrocks, six out of ten estimates for water-filled porosity were beyond 10% with CRIM, with the maximum error of 40%. Therefore, the improvement was more significant in the case of organic-rich mudrocks with complex pore structure. In the case of synthetic digital organic-rich mudrock samples, our simulation results confirm that not only the pore structure but also spatial distribution and tortuosity of water, kerogen, and pyrite networks affect the measurements of dielectric permittivity and electrical resistivity. Taking into account these parameters through the joint interpretation of dielectric-permittivity and electrical-resistivity measurements significantly improves assessment of hydrocarbon saturation.


Fractals ◽  
2015 ◽  
Vol 23 (01) ◽  
pp. 1540008 ◽  
Author(s):  
LIJUN YOU ◽  
QIANG CHEN ◽  
YILI KANG ◽  
YANGFENG YU ◽  
JINGAN HE

Formation damage evaluation is a key and basic link in optimizing working fluids. It is widely accepted that formation damage is the reduction of core plugs permeability caused by working fluid invasion. However, the measurement of permeability faces a huge challenge for shale formation, such as overspending, time-consuming and the scarcity of unbroken core plug samples. A new method of fractal analysis derived from Scanning Electron Microscopy (SEM) image of shale pore structure was used to quantify the shale formation damage. This method needs to select optimal magnification and segmentation threshold value of SEM image to obtain exact Fractal Dimension (FD) of pore structure. In this paper, we take the black shale outcrops from Sichuan Basin for an example. The results shows that the optimal magnification for observation of the pore structure using SEM imaging in this area is 1000×, and the optimal threshold value for binary image is 29 (RGB). Microscopic pore structure of the shale follows the fractal law, and the FDs increase with increasing measurement scales. It is evident that the evaluation results of shale formation damage when exposed to 2 wt.% NaOH solution and 2 wt.% brine solution using microstructure fractal are exceptionally in good agreement with permeability reduction results. The microstructure fractal obtained from SEM images provides a new method for evaluation of shale formation damage. And it can be applied to optimize the screening working fluids used in shale formation in real time under the condition of high temperature and high pressure.


2019 ◽  
Vol 44 (10) ◽  
pp. 3432-3440
Author(s):  
Zan Ke ◽  
Xu Yan ◽  
Xiangde Min ◽  
Wei Cai ◽  
Peipei Zhang ◽  
...  

2019 ◽  
Vol 34 (1) ◽  
pp. 82-94
Author(s):  
Chenhui Wang ◽  
Kejian Wu ◽  
Gilbert G. Scott ◽  
Alfred R. Akisanya ◽  
Quan Gan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document