Comparison of Gold Nanospheres, Nanorods, Nanocages and Nanoflowers for Combined Photothermal-Radiotherapy of Cancer

NANO ◽  
2021 ◽  
pp. 2150037
Author(s):  
Lijie Yang ◽  
Jinhua Wang ◽  
Liying Sun ◽  
Yisi Zhang ◽  
Peng Huang ◽  
...  

Gold nanoparticles are promising dual agents for combined photothermal-radiotherapy of cancer. Nevertheless, the shape effects of gold nanoparticles on photothermal conversion efficiency and radiosensitization have not been completely revealed. To address this knowledge gap, different shapes of gold nanoparticles including gold nanospheres (GNSs), gold nanorods (GNRs), gold nanocages (GNCs) and gold nanoflowers (GNFs) were synthesized. Despite being subjected to the same modification with poly (ethylene glycol) (PEG), these gold nanoparticles showed different cellular uptake efficiencies: GNFs[Formula: see text][Formula: see text][Formula: see text]GNSs[Formula: see text][Formula: see text][Formula: see text]GNCs[Formula: see text][Formula: see text][Formula: see text]GNRs. Moreover, GNRs, GNCs and GNFs could convert near-infrared (NIR) light to heat and GNFs displayed the highest photothermal conversion efficiency, whereas GNSs showed poor photothermal effects due to the weak NIR absorption. The highest uptake efficiency as well as the best photothermal conversion ability led to GNFs to exhibit the best photothermal therapeutic effect. Furthermore, all the gold nanoparticles could be used as radiosensitizers to improve radiotherapeutic effect. Among these nanoparticles, GNFs showed the best radiation enhancement effect because of their highest uptake efficiency. Furthermore, a higher accumulation of GNFs in tumor tissues was observed than those of other shaped gold nanoparticles. Importantly, our in vitro and in vivo comparative studies revealed that GNFs possessed the strongest anticancer effect in combined photothermal-radiotherapy. Hence, compared to gold nanoparticles with other shapes, the GNFs might be more desirable dual agents for highly efficient combined photothermal-radiotherapy.

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1776 ◽  
Author(s):  
Wenhao Dai ◽  
Haifeng Dong ◽  
Xueji Zhang

Theranostic platforms integrating imaging diagnostic and therapeutic interventions into a single nanoplatform have attracted considerable attention for cancer-individualized therapies. However, their uncertain stability, complex pharmacokinetics, and intrinsic toxicology of multiple components hinder their practical application in clinical research. In this paper, stable and high-concentration molybdenum carbide quantum dots (Mo2C QDs) with a diameter of approximately 6 nm and a topographic height of about 1.5 nm were synthesized using a facile sonication-assisted liquid-phase exfoliation approach. The prepared Mo2C QDs exhibited a strong near-infrared (NIR) absorbance with a high molar extinction coefficient of 4.424 Lg−1cm−1 at 808 nm, a high photothermal conversion efficiency of 42.9%, and showed excellent performance on photoacoustic imaging. The Mo2C QDs had high stability and highly biocompatibility, with low cytotoxicity. Under NIR irradiation, a remarkable in vitro and in vivo therapeutic effect was obtained. Such a stable and biocompatible all-in-one theranostic nanoagent generated by facile synthesis that combines promising imaging guidance and effective tumor ablation properties may hold great potential for theranostic nanomedicine.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Tânia Ferreira-Gonçalves ◽  
Maria Manuela Gaspar ◽  
João M. P. Coelho ◽  
Vanda Marques ◽  
Ana S. Viana ◽  
...  

Breast cancer is a high-burden malignancy for society, whose impact boosts a continuous search for novel diagnostic and therapeutic tools. Among the recent therapeutic approaches, photothermal therapy (PTT), which causes tumor cell death by hyperthermia after being irradiated with a light source, represents a high-potential strategy. Furthermore, the effectiveness of PTT can be improved by combining near infrared (NIR) irradiation with gold nanoparticles (AuNPs) as photothermal enhancers. Herein, an alternative synthetic method using rosmarinic acid (RA) for synthesizing AuNPs is reported. The RA concentration was varied and its impact on the AuNPs physicochemical and optical features was assessed. Results showed that RA concentration plays an active role on AuNPs features, allowing the optimization of mean size and maximum absorbance peak. Moreover, the synthetic method explored here allowed us to obtain negatively charged AuNPs with sizes favoring the local particle accumulation at tumor site and maximum absorbance peaks within the NIR region. In addition, AuNPs were safe both in vitro and in vivo. In conclusion, the synthesized AuNPs present favorable properties to be applied as part of a PTT system combining AuNPs with a NIR laser for the treatment of breast cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiang Li ◽  
Zhen Wang ◽  
Mian Ma ◽  
Zhouqing Chen ◽  
Xiang-long Tang ◽  
...  

Background and Purpose. Although chemodynamic therapy (CDT) is promising for cancer treatment, its clinical application is still limited because of unresolved issues. In this study, an efficient CDT agent for synergistic chemo/CDT therapy mediated by the photothermal effect was developed by an iron oxide self-assembly method. Methods. Superparamagnetic iron oxide nanoclusters (SPIOCs) were located within the core, which resulted in high photothermal conversion and outstanding generation of reactive oxygen species (ROS). The shell consisted of a human serum albumin- (HSA-) paclitaxel (PTX) layer, which extended the blood circulation time and ensured the effectiveness of the chemotherapy. Arg-Gly-Asp peptides (RGD) were linked to the naked cysteine moieties in HSA to promote the specific targeting of human glioma U87 cells by αvβ3 integrins. Continuous near-infrared light irradiation triggered and promoted the synergistic chemo/CDT therapy through the photothermal effect. Results. Our SPIOCs@HSA-RGD nanoplatform showed well biocompatibility and could target glioma specifically. Photothermal conversion and ROS burst were detected after continuous 808 nm light irradiation, and a significant antitumor effect was achieved. Conclusion. Experimental in vitro and in vivo evaluations showed that our photothermal-mediated chemo/CDT therapy could efficiently inhibit tumor growth and is therefore promising for cancer therapy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yue Ding ◽  
Chenwei Wang ◽  
Bing Lu ◽  
Yong Yao

Indocyanine green (ICG) is a classical near-infrared (NIR) photothermal reagent that can be employed in clinical medical detection. Under neutral conditions, ICG can adsorb NIR light effectively for photothermal (PTT) and photodynamic (PDT) therapy. However, ICG is easily degraded in weak acid environments, which seriously restricts its application. In this work, a cationic water-soluble pillar[5]arene (WP5) was selected as the stabilizing agent for ICG. Thanks to the host-guest interaction between WP5 and alkyl sulfonate, the stability and the photothermal conversion efficiency of ICG increased remarkably upon addition of WP5 as investigated by UV-vis spectrum and photothermal studies. Furthermore, an in vitro study showed higher efficiency of WP5&ICG in killing cancer cells in a shorter treatment time than the free ICG. Hence, it is hopeful that WP5 can be a new type of supramolecular host in enhancing the stability and photothermal conversion efficiency of photosensitizers.


2018 ◽  
Vol 54 (99) ◽  
pp. 13989-13992 ◽  
Author(s):  
Changhui Fu ◽  
Longfei Tan ◽  
Xiangling Ren ◽  
Qiong Wu ◽  
Haibo Shao ◽  
...  

Interlayer-expanded MoS2 nanosheets with a value of 0.94 nm are demonstrated to show a high photothermal conversion efficiency of ∼62%.


2020 ◽  
Author(s):  
Lin Bai ◽  
Fangchao Jiang ◽  
Renjie Wang ◽  
Chaebin Lee ◽  
Hui Wang ◽  
...  

Abstract Background: Radiation therapy is a main treatment option for cancer. Due to normal tissue toxicity, radiosensitizers are commonly used to enhance RT. In particular, heavy metal or high-Z materials, such as gold nanoparticles, have been investigated as radiosensitizers. So far, however, the related studies have been focused on spherical gold nanoparticles. In this study, we assessed the potential of ultra-thin gold nanowires as a radiosensitizer, which is the first time. Methods: Gold nanowires were synthesized by the reduction of HAuCl4 in hexane. The as-synthesized gold nanowires were then coated with a layer of PEGylated phospholipid to be rendered soluble in water. Spherical gold nanoparticles coated with the same phospholipid were also synthesized as a comparison. Gold nanowires and gold nanospheres were first tested in solutions for their ability to enhance radical production under irradiation. They were then incubated with 4T1 cells to assess whether they could elevate cell oxidative stress under irradiation. Lastly, gold nanowires and gold nanoparticles were intratumorally injected into a 4T1 xenograft model, followed by irradiation applied to tumors (3 Gy/per day for three days). Tumor growth was monitored and compared. Results: Our studies showed that gold nanowires are superior to gold nanospheres in enhancing radical production under X-ray radiation. In vitro analysis found that the presence of gold nanowires caused elevated lipid peroxidation and intracellular oxidative stress under radiation. When tested in vivo, gold nanowires plus irradiation led to better tumor suppression than gold nanospheres plus radiation. Moreover, gold nanowires were found to be gradually reduced to shorter nanowires by glutathione, which may benefit fractionated radiation. Conclusion: Our studies suggest that gold nanowires are a promising type of radiosensitizer that can be safely injected into tumors to enhance radiotherapy. While the current study was conducted in a breast cancer model, the approach can be extended to the treatment of other cancer types.


2022 ◽  
Author(s):  
Chenxi Li ◽  
Rui Liu ◽  
Yurong Song ◽  
Dongjie Zhu ◽  
Liuchunyang Yu ◽  
...  

Abstract Triptolide (TP) is a DMARD highly effective in patients with RA. Hyaluronic acid (HA) hydrogels loaded RGD-attached gold nanoparticles containing TP were synthesized to alleviate the toxicity and increase therapeutic specificity. The hydrogels can be applied for targeted photothermal-chemo therapy, and in vivo imaging of RA. Heat was locally generated at the inflammation site after degradation of HA chains due to near-infrared resonance (NIR) irradiation of gold nanoparticles (AuNPs), and TP was released. Administration of the hybrid hydrogels containing low dosage of TP combined with NIR irradiation alleviated arthritic conditions and improved the inflamed joint in collagen-induced arthritis (CIA) mice. In vitro effect of the hydrogel was mediated through decrease of phosphorylation of mTOR and its substrate, p70S6K1, thus inhibiting mTOR pathway.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 138
Author(s):  
Marc Pretze ◽  
Valeska von Kiedrowski ◽  
Roswitha Runge ◽  
Robert Freudenberg ◽  
René Hübner ◽  
...  

This paper reports on the development of tumor-specific gold nanoparticles (AuNPs) as theranostic tools intended for target accumulation and the detection of tumor angiogenesis via optical imaging (OI) before therapy is performed, being initiated via an external X-ray irradiation source. The AuNPs were decorated with a near-infrared dye, and RGD peptides as the tumor targeting vector for αvβ3-integrin, which is overexpressed in tissue with high tumor angiogenesis. The AuNPs were evaluated in an optical imaging setting in vitro and in vivo exhibiting favorable diagnostic properties with regards to tumor cell accumulation, biodistribution, and clearance. Furthermore, the therapeutic properties of the AuNPs were evaluated in vitro on pUC19 DNA and on A431 cells concerning acute and long-term toxicity, indicating that these AuNPs could be useful as radiosensitizers in therapeutic concepts in the future.


2019 ◽  
Vol 7 (14) ◽  
pp. 2247-2251 ◽  
Author(s):  
Lu Li ◽  
Qingzhu Yang ◽  
Lei Shi ◽  
Nannan Zheng ◽  
Zeyu Li ◽  
...  

Novel phthalocyanine molecule 4OCSPC with deep NIR absorbance showed excellent photothermal therapy property for cancer cells.


Sign in / Sign up

Export Citation Format

Share Document