scholarly journals GESLA Version 3: A major update to the global higher-frequency sea-level dataset

2021 ◽  
Author(s):  
Ivan Haigh ◽  
Marta Marcos ◽  
Stefan Talke ◽  
Philip Woodworth ◽  
John Hunter ◽  
...  

This paper describes a major update to the quasi-global, higher-frequency sea-level dataset known as GESLA (Global Extreme Sea Level Analysis). Versions 1 (released 2009) and 2 (released 2016) of the dataset have been used in many published studies, across a wide range of oceanographic and coastal engineering-related investigations concerned with evaluating tides, storm surges, extreme sea levels and other related processes. The third version of the dataset (released 2021), presented here, contains twice the number of years of data (91,021), and nearly four times the number of records (5,119), compared to version 2. The dataset consists of records obtained from multiple sources around the world. This paper describes the assembly of the dataset, its processing and its format, and outlines potential future improvements. The dataset is available from https://www.gesla.org.

2020 ◽  
Author(s):  
Sanne Muis ◽  
Maialen Irazoqui Apecechea ◽  
Job Dullaart ◽  
Joao de Lima Rego ◽  
Kristine S. Madsen ◽  
...  

<p>Climate change will lead to increases in the flood risk in low-lying coastal areas. Understanding the magnitude and impact of such changes is vital to design adaptive strategies and create awareness. In  the  context  of  the  CoDEC  project  (Coastal  Dataset  for  Evaluation  of  Climate  impact),  we  developed a consistent European dataset of extreme sea levels, including climatic changes from 1979 to 2100. To simulate extreme sea levels, we apply the Global Tide and Surge Model v3.0 (GTSMv3.0), a 2D hydrodynamic model with global coverage. GTSM has a coastal resolution of 2.5 km globally and 1.25 km in Europe, and incorporates dynamic interactions between sea-level  rise,  tides  and  storm surges. Validation of the dataset shows a good performance with a mean bias of 0-.04 m for the 1 in 10-year water levels. When analyzing changes in extreme sea levels for the future climate scenarios, it is projected that by the end of the century the 1 in 10-year water levels are likely to increase up to 0.5 m. This change is largely driven by the increase in mean sea levels, although locally changes in storms surge and interaction with tides can amplify the impacts of sea-level rise with changes up to 0.2 m in the 1 in 10-year water level.</p><p>The CoDEC dataset will be made accessible through a web portal on Copernicus Climate Data Store (C3S). The dataset includes a set of Climate Impact Indicators (CII’s) and new tools designed to evaluate the impacts of climate change on different sectors and industries. This data service will support European coastal sectors to adapt to changes in sea levels associated with climate change. In this presentation we will also demonstrate how the C3S coastal service can be used to enhance the understanding of local climate impacts.</p>


2021 ◽  
Vol 11 (9) ◽  
pp. 746-751
Author(s):  
Claudia Tebaldi ◽  
Roshanka Ranasinghe ◽  
Michalis Vousdoukas ◽  
D. J. Rasmussen ◽  
Ben Vega-Westhoff ◽  
...  

AbstractThe Paris agreement focused global climate mitigation policy on limiting global warming to 1.5 or 2 °C above pre-industrial levels. Consequently, projections of hazards and risk are increasingly framed in terms of global warming levels rather than emission scenarios. Here, we use a multimethod approach to describe changes in extreme sea levels driven by changes in mean sea level associated with a wide range of global warming levels, from 1.5 to 5 °C, and for a large number of locations, providing uniform coverage over most of the world’s coastlines. We estimate that by 2100 ~50% of the 7,000+ locations considered will experience the present-day 100-yr extreme-sea-level event at least once a year, even under 1.5 °C of warming, and often well before the end of the century. The tropics appear more sensitive than the Northern high latitudes, where some locations do not see this frequency change even for the highest global warming levels.


Author(s):  
Yasha Hetzel ◽  
Ivica Janekovic ◽  
Charitha Pattiaratchi

Extreme sea levels result from a combination of a range of factors that include long term mean sea level variability, astronomical tides, storm surges due to atmospheric pressure and wind, wave breaking, and other regional dynamics. Numerical circulation/storm-surge models are frequently used to predict water levels over broad areas with the outputs used for planning or emergency management applications. Recently, coupled wave-circulation models have been shown to improve extreme sea level predictions through the inclusion of wave setup that results from the transfer of momentum of breaking waves into sea level at the shoreline. Other studies have shown that the representations of surface wind drag can be improved when the sea state is considered, and this can directly influence the amplitude of storm surges at the coast. However, most coupled wave-circulation model studies have been undertaken for relatively small computational domains and for a limited range of coastal morphologies and storm types. In this paper we assess the benefits and limitations of using a coupled wave-circulation model to predict extreme sea levels and determine wave effects for a broad range of coastal morphologies and extreme storm events all around Australia. Simulated events occurred in three oceans and considered tropical cyclones, a cyclone undergoing extratropical transition, and a large mid-latitude extratropical low-pressure system.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/UfyWHI4OHBA


2020 ◽  
Author(s):  
Piero Lionello ◽  
David Barriopedro ◽  
Christian Ferrarin ◽  
Robert J. Nicholls ◽  
Mirko Orlic ◽  
...  

Abstract. Floods in the Venice city centre result from the superposition of several factors: astronomical tides, seiches and atmospherically forced fluctuations, which include storm surges, meteotsunamis, and surges caused by planetary waves. All these factors can contribute to positive sea-level anomalies individually and can also result in extreme sea-level events when they act constructively. The largest extreme sea level events have been mostly caused by storm surges produced by the Sirocco winds. This leads to a characteristic seasonal cycle, with the largest and most frequent events occurring from November to March. Storm surges can be produced by cyclones whose centers are located either north or south of the Alps. The most intense historical events have been produced by cyclogenesis in the western Mediterranean, to the west of the main cyclogenetic area of the Mediterranean region in the Gulf of Genoa. Only a small fraction of the interannual variability of extreme sea levels is described by fluctuations in the dominant patterns of atmospheric circulation variability over the Euro-Atlantic sector. Therefore, decadal fluctuations of sea-level extremes remain largely unexplained. In particular, the effect of the 11-year solar cycle appears to be small, non-stationary or masked by other factors. The historic increase in the frequency of extreme sea levels since the mid 19th Century is explained by relative sea level rise, with no long term trend in the intensity of the atmospheric forcing. Analogously, future regional relative mean sea level rise will be the most important driver of increasing duration and intensity of Venice floods through this century, overwhelming the small decrease in marine storminess projected during the 21 century. Consequently, the future increase of extreme sea levels covers a large range, partly reflecting the highly uncertain mass contributions to future mean sea level rise from the melting of Antarctica and Greenland ice-sheets, especially towards the end of the century. In conclusion, for a high emission scenario the magnitude of 1-in-100 year sea level events at the North Adriatic coast is projected to increase up to 65 % and 160 % in 2050 and 2100, respectively, with respect to the present value, and subject to continued increase thereafter. Local subsidence can further contribute to the future increase of extreme sea levels. This analysis shows the need for adaptive planning of coastal defenses with solutions that can be adopted to face the large range of plausible future sea-level extremes.


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


2021 ◽  
Author(s):  
Krešimir Ruić ◽  
Jadranka Šepić ◽  
Maja Karlović ◽  
Iva Međugorac

<p>Extreme sea levels are known to hit the Adriatic Sea and to occasionally cause floods that produce severe material damage. Whereas the contribution of longer-period (T > 2 h) sea-level oscillations to the phenomena has been well researched, the contribution of the shorter period (T < 2 h) oscillations is yet to be determined. With this aim, data of 1-min sampling resolution were collected for 20 tide gauges, 10 located at the Italian (north and west) and 10 at the Croatian (east) Adriatic coast. Analyses were done on time series of 3 to 15 years length, with the latest data coming from 2020, and with longer data series available for the Croatian coast. Sea level data were thoroughly checked, and spurious data were removed. </p><p>For each station, extreme sea levels were defined as events during which sea level surpasses its 99.9 percentile value. The contribution of short-period oscillations to extremes was then estimated from corresponding high-frequency (T < 2 h) series. Additionally, for four Croatian tide gauge stations (Rovinj, Bakar, Split, and Dubrovnik), for period of 1956-2004, extreme sea levels were also determined from the hourly sea level time series, with the contribution of short-period oscillations visually estimated from the original tide gauge charts.  </p><p>Spatial and temporal distribution of contribution of short-period sea-level oscillations to the extreme sea level in the Adriatic were estimated. It was shown that short-period sea-level oscillation can significantly contribute to the overall extremes and should be considered when estimating flooding levels. </p>


2021 ◽  
Author(s):  
Tihana Dević ◽  
Jadranka Šepić ◽  
Darko Koračin

<p>An objective method for tracking pathways of cyclone centres over Europe was developed and applied to the ERA-Interim reanalysis atmospheric data (1979-2014). The method was used to determine trajectories of those Mediterranean cyclones which generated extreme sea levels along the northern and the eastern Adriatic coast during the period from 1979 to 2014. Extreme events were defined as periods during which sea level was above 99.95 percentile value of time series of hourly sea-level data measured at the Venice (northern Adriatic), Split (middle eastern Adriatic) and Dubrovnik (south-eastern Adriatic) tide-gauge stations. The cyclone pathways were tracked backwards from the moment closest to the moment of maximum sea level up to the cyclone origin time, or at most, up to 72 hours prior the occurrence of the sea-level maximum.</p><p>Our results point out that extreme sea levels in Venice normally appear during synoptic situations in which a cyclone centre is located to the south-west and north-west of Venice, i.e., when it can be found over the Gulf of Genoa, or the Alps. On the contrary, extreme sea levels in Dubrovnik are usually associates with cyclone centres above the middle Adriatic, whereas floods in Split seem to appear during both above-described types of situations.</p><p>Occurrence times and intensity of cyclones and extreme sea-levels was further associated with the NAO index. It has been shown that the deepest cyclones and corresponding extreme floods tend to occur during the negative NAO phase.   </p>


2021 ◽  
Author(s):  
Christian Ferrarin ◽  
Piero Lionello ◽  
Mirko Orlic ◽  
Fabio Raicich ◽  
Gianfausto Salvadori

<p><span><span>Extreme sea levels at the coast result from the combination of astronomical tides with atmospherically forced fluctuations at multiple time scales. Seiches, river floods, waves, inter-annual and inter-decad</span></span><span><span>al dynamics and relative sea-level rise can also contribute to the total sea level. While tides are usually well described and predicted, the effect of the different atmospheric contributions to the sea level and their trends are still not well understood. Meso-scale atmospheric disturbances, synoptic-scale phenomena and planetary atmospheric waves (PAW) act at different temporal and spatial scales and thus generate sea-level disturbances at different frequencies. In this study, we analyze the 1872-2019 sea-level time series in Venice (northern Adriatic Sea, Italy) to investigate the relative role of the different driving factors in the extreme sea levels distribution. The adopted approach consists in 1) isolating the different contributions to the sea level by applying least-squares fitting and Fourier decomposition; 2) performing a multivariate statistical analysis which enables the dependencies among driving factors and their joint probability of occurrence to be described; 3) analyzing temporal changes in extreme sea levels and extrapolating possible future tendencies. The results highlight the fact that the most extreme sea levels are mainly dominated by the non-tidal residual, while the tide plays a secondary role. The non-tidal residual of the extreme sea levels is attributed mostly to PAW surge and storm surge, with the latter component becoming dominant for the most extreme events. The results of temporal evolution analysis confirm previous studies according to which the relative sea-level rise is the major driver of the increase in the frequency of floods in Venice over the last century. However, also long term variability in the storm activity impacted the frequency and intensity of extreme sea levels and have contributed to an increase of floods in Venice during the fall and winter months of the last three decades.</span></span></p>


2019 ◽  
Vol 19 (5) ◽  
pp. 1067-1086 ◽  
Author(s):  
Frank Colberg ◽  
Kathleen L. McInnes ◽  
Julian O'Grady ◽  
Ron Hoeke

Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally; however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP 8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide–surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, 20-year-long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Changes in extreme sea levels are apparent, but there are large inter-model differences. On the southern mainland coast all models simulated a southward movement of the subtropical ridge which led to a small reduction in sea level extremes in the hydrodynamic simulations. Sea level changes over the Gulf of Carpentaria in the north are largest and positive during austral summer in two out of the four models. In these models, changes to the northwest monsoon appear to be the cause of the sea level response. These simulations highlight a sensitivity of this semi-enclosed gulf to changes in large-scale dynamics in this region and indicate that further assessment of the potential changes to the northwest monsoon in a larger multi-model ensemble should be investigated, together with the northwest monsoon's effect on extreme sea levels.


Sign in / Sign up

Export Citation Format

Share Document