building with nature
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 19)

H-INDEX

6
(FIVE YEARS 0)

2022 ◽  
Vol 28 (3) ◽  
pp. 319-328
Author(s):  
Widyaningtias Widyaningtias ◽  
Ingerawi Sekaring Bumi ◽  
Joko Nugroho ◽  
M. Bagus Adityawan ◽  
Arno Adi Kuntoro
Keyword(s):  

Perubahan garis pantai merupakan salah satu masalah yang dihadapi masyarakat di kawasan pesisir utara Jawa, Indonesia. Hilangnya sabuk mangrove di kawasan pantai secara bertahap menyebabkan terjadinya erosi pantai. Untuk mengatasi masalah tersebut, konsep adaptif menggunakan Building with Nature (BwN) mulai dikembangkan di beberapa lokasi di pantai utara Jawa. Konsep ini diharapkan dapat menjadi solusi permasalahan erosi dengan memanfaatkan proses alam dan tetap memperhatikan kelangsungan ekosistem setempat, yaitu dengan pembangunan struktur berpori (permeable structure). Di kawasan pesisir Demak, pembangunan struktur berpori dimulai sejak 2013 di Desa Bogorame dan mampu menahan sedimen setinggi 45 cm dalam 1.5 tahun. Pemodelan akan menggunakan perangkat lunak Delft3D dengan meggabungkan antara model Delft3D-Flow dan Delft3D-Wave. Pemodelan dilakukan dengan menempatkan thin dam sebagai struktur berpori sesuai kondisi eksisting di lapangan. Simulasi akan dilakukan pada musim hujan dan kemarau, dengan memasukkan input gelombang signifikan pada kedua musim tersebut. Berdasarkan simulasi, dapat disimpulkan bahwa pada musim penghujan, struktur berpori menangkap lebih banyak sedimen dibandingkan pada musim kemarau. Pada beberapa lokasi, erosi terjadi saat musim penghujan, namun akan terisi kembali pada saat musim kemarau. Lebih lanjut lagi, konsep adaptif dari struktur berpori ini diharapkan dapat mempercepat restorasi pantai di kawasan pesisir Demak.


2021 ◽  
pp. 67-73
Author(s):  
Pieter Van Oord
Keyword(s):  

2021 ◽  
Vol 40 (10) ◽  
pp. 152-166
Author(s):  
Zhentao Chong ◽  
Min Zhang ◽  
Jiahong Wen ◽  
Luyang Wang ◽  
Jie Mi ◽  
...  

2021 ◽  
Vol 7 ◽  
pp. 241-260
Author(s):  
Kathelijne Wijnberg ◽  
Daan Poppema ◽  
Jan Mulder ◽  
Janneke Van Bergen ◽  
Geert Campmans ◽  
...  

The long-term physical existence of sandy shores critically depends on a balanced sediment budget. From the principles of Building with Nature it follows that a sustainable protection of sandy shores should employ some form of shore nourishment. In the spatial design process of urbanized sandy shores, where multiple functions must be integrated, the knowledge and the prediction of sediment dynamics and beach-dune morphology thus play an essential role. This expertise typically resides with coastal scientists who have condensed their knowledge in various types of morphological models that serve different purposes and rely on different assumptions, thus have their specific strengths and limitations. This paper identifies morphological information needs for the integrated spatial design of urbanized sandy shores using BwN principles, outlines capabilities of different types of morphological models to support this and identifies current gaps between the two. A clear mismatch arises from the absence of buildings and accompanying human activities in current numerical models simulating morphological developments in beach-dune environments.


2021 ◽  
Vol 7 ◽  
pp. 29-50
Author(s):  
Mindert De Vries ◽  
Mark Van Koningsveld ◽  
Stefan Aarninkhof ◽  
Huib De Vriend

Hydraulic engineering infrastructure is supposed to keep functioning for many years and is likely to interfere with both the natural and the social environment at various scales. Due to its long life-cycle, hydraulic infrastructure is bound to face changing environmental conditions as well as changes in societal views on acceptable solutions. This implies that sustainability and adaptability are/should be important attributes of the design, the development and operation of hydraulic engineering infrastructure. Sustainability and adaptability are central to the Building with Nature (BwN) approach. Although nature-based design philosophies, such as BwN, have found broad support, a key issue that inhibits a wider mainstream implementation is the lack of a method to objectify BwN concepts. With objectifying, we mean turning the implicit into an explicit engineerable ‘object’, on the one hand, and specifying clear design ‘objectives’, on the other. This paper proposes the “Frame of Reference” approach as a method to systematically transform BwN concepts into functionally specified engineering designs. It aids the rationalisation of BwN concepts and facilitates the transfer of crucial information between project development phases, which benefits the uptake, acceptance and eventually the successful realisation of BwN solutions. It includes an iterative approach that is well suited for assessing status changes of naturally dynamic living building blocks of BwN solutions. The applicability of the approach is shown for a case that has been realised in the Netherlands. Although the example is Dutch, the method, as such, is generically applicable.


2021 ◽  
Vol 7 ◽  
pp. 283-292
Author(s):  
Janneke Van Bergen ◽  
Steffen Nijhuis ◽  
Nikki Brand ◽  
Marcel Hertogh

The incentive for this publication was to expand the realm of enquiry around the topic of Building with Nature (BwN), for two main reasons. First to gain an interdisciplinary, and therefore deeper, understanding of BwN as an object of study. Secondly, but no less important, is an understanding of how different forms of knowledge contribute to our learning regarding BwN. When we understand the contribution of several academic disciplines and knowledge from practice, we may eventually get to the point where we can identify how they can collaborate successfully to contribute to BwN as an interdisciplinary field.


2021 ◽  
Vol 7 ◽  
pp. 149-174
Author(s):  
Jacqueline Heerema

Now that people all around the world are slowly starting to rethink how humanity and the planet are interrelated, new questions have arisen around the understanding of time and the perception of place. It’s not merely a technical or a political challenge that we are facing, it is also a cultural one. The Sand Motor - as the first of its kind - uses the forces of the wind and waves as active agengies of change, but can it be valued as a driving force for humanity to change as well? Drawing from primary artistic research of the sea, coastal transitions, climate change and human appropriations in The Netherlands and abroad, we can state that the ephemeral nature of the Sand Motor itself challenges a polyphonic discourse for co-creation of experiential knowledge. The Sand Motor can be perceived as a man-made intervention in public space, an open-air, publicly accessible research site. Over the past 10 years, Satellietgroep redefined the Sand Motor as a cultural phenomenon, connecting the Sand Motor to the realms of art, culture, and heritage. This essay discusses a series of human-inclusive art projects, in which the Sand Motor evolves from a non-place into a vital learning environment for the cross-pollination of ideas and experimentations to rethink culture and nature. They demonstrate that pioneering with the Sand Motor should include pioneering with the social and cultural values of this artifact, not only to raise public and professional climate-consciousness, but also to adopt it as a human-inclusive landscape. This may well be the most underestimated value of the Sand Motor itself, and of the concept of Building with Nature in general.


2021 ◽  
Vol 7 ◽  
pp. 203-220
Author(s):  
Maike Van Stiphout

In a world where increased prosperity has created a number of novel, ecosystem-related threats to people’s health and the economy, designing with nature offers a promising outlook to mute the potential negative impacts of our actions and to keep improving the quality of life worldwide. It also provides an alternative to an attitude that has been largely negligent towards our non-human fellow beings. Drawing from the experience of DS landscape architects, four actualized projects and two student master theses illustrate the challenges, opportunities and benefits that building with nature presents. These cases highlight four important lessons for designing with nature in rural and urban landscapes. First, considering the surrounding landscape as a starting point creates a deeper understanding of the situation at hand. This allows for better planning with the ecosystem and enhances the richness of its biodiversity once a project is delivered. Secondly, planning with nature creates the opportunity to let nature do some of the work. This can include water purification, drainage, and cooling. The third lesson is that designing with nature requires a long-term plan. Maintenance might be necessary, and the public may need to be patient to watch the ecosystem slowly flourish through the decades. Finally, creating a new kind of wilderness-imbued beauty to inspire public acceptance and to motivate stewardship is a promising method for establishing a successful long-term nature-inclusive design project. These and other lessons contribute to a field of design where incorporating nature is the status quo.


2021 ◽  
Vol 7 ◽  
pp. 73-98
Author(s):  
Renate Klaassen ◽  
Baukje Kothuis ◽  
Jill Slinger

Building with Nature (BwN) infrastructure designs are characterised by disciplinary integration, non-linearity, diverse and fluid design requirements, and long-term time frames that balance the limitations of earth’s natural systems and the socio-technical systems created by humans. Differentiating roles in the engineering design process may offer strategies for better solutions. Four complementary engineering design roles were distinguished, namely: Specialists, System Integrators, Front-end Innovators, and Contextual Engineers. The key research question addressed in this paper asks, how can the introduction of engineering roles enhance interdisciplinary processes for BwN design? Three Building with Nature design workshops with international groups of students from multiple disciplines and various education levels provided the ideal context for investigating whether engineering roles enhance such interdisciplinary ways of working. Results indicate that the application of engineering roles in each of the three workshops indeed supported interdisciplinary design. A number of conditions for successful implementation within an authentic learning environment could be identified. The engineering roles sustain an early, divergent way of looking at the design problem and support the search for common ground across the diverse perspectives of the team members, each bringing different disciplinary backgrounds to the design table. The chapter closes with a discussion on the value of engineering design roles and their significance for the Building with Nature approach.


Sign in / Sign up

Export Citation Format

Share Document