scholarly journals DESIGN OF EXPERIMENT FOR SPORTS EQUIPMENT - EXPERIMENTALLY MAPPING THE DESIGN SPACE FOR PARALYMPIC ALPINE OUTRIGGERS

2021 ◽  
Vol 1 ◽  
pp. 1073-1082
Author(s):  
Helene Silseth ◽  
Henrik Snarvold Sletten ◽  
Harald Grøndahl ◽  
Sindre Wold Eikevåg ◽  
Martin Steinert

AbstractThis article presents a design of an experiment for investigating the effect of changing the geometry of Paralympic alpine sit-ski poles/outriggers in the LW 10-12 class. An experiment design for mapping an individual athlete’s performance parameters has been developed, with a resolution for finding the optimal outrigger geometry. By prototyping an adjustable experiment setup with implemented sensor systems, the performance increase can be analysed and implemented in new equipment. Results show that changing double poling geometry provides a substantial performance increase, regarding time and propulsive force.

2022 ◽  
Author(s):  
Harshit Kansal ◽  
Aditya S Medury

<div>In this letter, through TCAD simulations, we show that the introduction of a thin paraelectric (PE) layer between the ferroelectric (FE) and dielectric (DE) layers in an MFIS structure, expands the design space for the FE layer enabling hysteresis-free and steep subthreshold behavior, even with a thicker FE layer. This can be explained by analyzing the FE-PE stack from a capacitance perspective where the thickness of the PE layer in the FE-PE stack has the effect of reducing the FE layer thickness, while also reducing the remnant polarization. Finally, for the same FE-PE-DE stack, analog performance parameters such as $\frac{g_{m}} g_{ds}}$ and $\frac{g_{m}}{I_{d}}$ are analyzed, showing good characteristics over a wide range of gate lengths, at low drain voltages, thus demonstrating applicability for low power applications.</div>


Author(s):  
Dulyachot Cholaseuk ◽  
Vijay Srinivasan ◽  
Vijay Modi

Abstract A method to identify robust designs of mechanical parts with free-form shapes is proposed. For each design, the geometry and operating conditions represent one design point in the design space, with noise altering the design point leading to a change in performance. A shape optimization process is conducted for each example problem. Each successive iteration during the process produces an iterative design point with the final one being the optimum design. Once the process is completed, a design of experiment approach is used to apply noise in order to generate samples around each and every iterative design point. Then a simple statistical method is utilized to analyze the samples in order to evaluate the robustness of each iterative design. The results show that an optimum design is not necessarily robust.


2021 ◽  
Author(s):  
Summit Sehgal

Multi Parametric Design Space Exploration (DSE) for optimal micro-architecture synthesis is an extremely complex yet crucial stage in embedded systems development. Often it is very time complex to find the best suitable configuration to map the inherently contradictory performance parameters into systems silicon real estate. Owing to its exponentially exploding design space and multi way combinatorial mapping, DSE has proven to be notoriously hard and intractable for VLSI CAD tools. The presented work introduces a highly scalable and generalized analytical approach to identify the best configuration of systems architecture while maintaining prime accuracy resolution. This DSE approach coupled with


2021 ◽  
Author(s):  
Summit Sehgal

Multi Parametric Design Space Exploration (DSE) for optimal micro-architecture synthesis is an extremely complex yet crucial stage in embedded systems development. Often it is very time complex to find the best suitable configuration to map the inherently contradictory performance parameters into systems silicon real estate. Owing to its exponentially exploding design space and multi way combinatorial mapping, DSE has proven to be notoriously hard and intractable for VLSI CAD tools. The presented work introduces a highly scalable and generalized analytical approach to identify the best configuration of systems architecture while maintaining prime accuracy resolution. This DSE approach coupled with


2022 ◽  
Author(s):  
Harshit Kansal ◽  
Aditya S Medury

<div>In this letter, through TCAD simulations, we show that the introduction of a thin paraelectric (PE) layer between the ferroelectric (FE) and dielectric (DE) layers in an MFIS structure, expands the design space for the FE layer enabling hysteresis-free and steep subthreshold behavior, even with a thicker FE layer. This can be explained by analyzing the FE-PE stack from a capacitance perspective where the thickness of the PE layer in the FE-PE stack has the effect of reducing the FE layer thickness, while also reducing the remnant polarization. Finally, for the same FE-PE-DE stack, analog performance parameters such as $\frac{g_{m}} g_{ds}}$ and $\frac{g_{m}}{I_{d}}$ are analyzed, showing good characteristics over a wide range of gate lengths, at low drain voltages, thus demonstrating applicability for low power applications.</div>


2015 ◽  
Vol 119 (1221) ◽  
pp. 1397-1414 ◽  
Author(s):  
N. V. Nguyen ◽  
J.-W. Lee ◽  
M. Tyan ◽  
D. Lee

AbstractThis paper describes a possibility-based multidisciplinary optimisation for electric-powered unmanned aerial vehicles (UAVs) design. An in-house integrated UAV (iUAV) analysis program that uses an electric-powered motor was developed and validated by a Predator A configuration for aerodynamics, weight, and performance parameters. An electric-powered propulsion system was proposed to replace a piston engine and fuel with an electric motor, power controllers, and battery from an eco-system point of view. Moreover, an in-house Possibility-Based Design Optimisation (iPBDO) solver was researched and developed to effectively handle uncertainty variables and parameters and to further shift constraints into a feasible design space. A sensitivity analysis was performed to reduce the dimensions of design variables and the computational load during the iPBDO process. Maximising the electric-powered UAV endurance while solving the iPBDO yields more conservative, but more reliable, optimal UAV configuration results than the traditional deterministic optimisation approach. A high fidelity analysis was used to demonstrate the effectiveness of the process by verifying the accuracy of the optimal electric-powered UAV configuration at two possibility index values and a baseline.


Sign in / Sign up

Export Citation Format

Share Document