scholarly journals Intravascular Crawling of Patrolling Monocytes: A Lèvy-Like Motility for Unique Search Functions?

2021 ◽  
Vol 12 ◽  
Author(s):  
Rocío Moreno-Cañadas ◽  
Laura Luque-Martín ◽  
Alicia G. Arroyo

Patrolling monocytes (PMo) are the organism’s preeminent intravascular guardians by their continuous search of damaged endothelial cells and harmful microparticles for their removal and to restore homeostasis. This surveillance is accomplished by PMo crawling on the apical side of the endothelium through regulated interactions of integrins and chemokine receptors with their endothelial ligands. We propose that the search mode governs the intravascular motility of PMo in vivo in a similar way to T cells looking for antigen in tissues. Signs of damage to the luminal side of the endothelium (local death, oxidized LDL, amyloid deposits, tumor cells, pathogens, abnormal red cells, etc.) will change the diffusive random towards a Lèvy-like crawling enhancing their recognition and clearance by PMo damage receptors as the integrin αMβ2 and CD36. This new perspective can help identify new actors to promote unique PMo intravascular actions aimed at maintaining endothelial fitness and combating harmful microparticles involved in diseases as lung metastasis, Alzheimer’s angiopathy, vaso-occlusive disorders, and sepsis.

2016 ◽  
Vol 7 ◽  
pp. 645-654 ◽  
Author(s):  
Bin Song ◽  
Yanli Zhang ◽  
Jia Liu ◽  
Xiaoli Feng ◽  
Ting Zhou ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.


Author(s):  
Tiziana Schioppa ◽  
Francesca Sozio ◽  
Ilaria Barbazza ◽  
Sara Scutera ◽  
Daniela Bosisio ◽  
...  

CCRL2 is a seven-transmembrane domain receptor that belongs to the chemokine receptor family. At difference from other members of this family, CCRL2 does not promote chemotaxis and shares structural features with atypical chemokine receptors (ACKRs). However, CCRL2 also differs from ACKRs since it does not bind chemokines and is devoid of scavenging functions. The only commonly recognized CCRL2 ligand is chemerin, a non-chemokine chemotactic protein. CCRL2 is expressed both by leukocytes and non-hematopoietic cells. The genetic ablation of CCRL2 has been instrumental to elucidate the role of this receptor as positive or negative regulator of inflammation. CCRL2 modulates leukocyte migration by two main mechanisms. First, when CCRL2 is expressed by barrier cells, such endothelial, and epithelial cells, it acts as a presenting molecule, contributing to the formation of a non-soluble chemotactic gradient for leukocytes expressing CMKLR1, the functional chemerin receptor. This mechanism was shown to be crucial in the induction of NK cell-dependent immune surveillance in lung cancer progression and metastasis. Second, by forming heterocomplexes with other chemokine receptors. For instance, CCRL2/CXCR2 heterodimers were shown to regulate the activation of β2-integrins in mouse neutrophils. This mini-review summarizes the current understanding of CCRL2 biology, based on experimental evidence obtained by the genetic deletion of this receptor in in vivo experimental models. Further studies are required to highlight the complex functional role of CCRL2 in different organs and pathological conditions.


1988 ◽  
Vol 255 (5) ◽  
pp. F984-F994 ◽  
Author(s):  
M. VanScoy ◽  
M. Loghman-Adham ◽  
M. Onsgard ◽  
M. Szczepanska-Konkel ◽  
S. Homma ◽  
...  

We examined whether phosphonoformate (PFA) can cause phosphaturia through its direct action on brush-border membrane (BBM) in vivo. Infusion of PFA or of parathyroid hormone (PTH) to thyroparathyroidectomized rats caused a marked increase in fractional excretion of phosphate without changes in excretion of Na+ or of GFR. The PFA-induced phosphaturia was not accompanied by an increase in urinary adenosine-3',5'-cyclic monophosphate (cAMP); moreover, PFA added in vitro did not influence the PTH-sensitive adenylate cyclase and cAMP-phosphodiesterase in proximal convoluted tubules. In BBM vesicles (BBMV) from rats with PFA-elicited phosphaturia, neither the rate of Na+-Pi symport nor Na+-dependent binding of [14C]PFA on BBMV was changed, whereas in BBMV from PTH-infused rats the Vmax of Na+-Pi symport decreased. PFA is almost completely ultrafiltrable; no metabolic transformation of PFA was detected after [14C]PFA exposure to rat renal cortical slices, homogenate, or to blood. We conclude that PFA causes phosphaturia by direct inhibition of Na+-Pi symport across BBM in proximal tubules, acting from the luminal side. Thus PFA (foscarnet) has a unique direct mechanism of phosphaturic effect, via its action on Pi reabsorption in proximal tubules in vivo.


1975 ◽  
Vol 53 (6) ◽  
pp. 1027-1036 ◽  
Author(s):  
André G. Craan ◽  
Michel Bergeron

The injection of cycloleucine (1-aminocyclopentanecarboxylic acid (ACPC)) into rats produces a hyperexcretion of dibasic amino acids and cystine, an aberration resembling cystinuria. This may constitute a model of experimental cystinuria, and the transport of amino acids involved in this disease was studied with the techniques of everted intestinal sacs (in vitro) and microinjections into renal tubules (in vivo). In everted sacs from normal rats, there was a decrease in transfer and in accumulation of L-cystine (0.03 mM), L-lysine (0.065 mM) and L-valine (0.065 mM) when ACPC was on the mucosal (luminal) side. Dibasic amino acids such as L-ariginine and L-lysine caused a similar inhibition of the transport of L-cystine. However, when ACPC was on the serosal (antiluminal) side, a lesser effect was noted while arginine and lysine had no effect. Intestinal sacs from treated rats (ACPC, 300 mg/kg × 3 days) transferred and accumulated as much L-cystine as those from control rats. The interaction between cycloleucine and L-cystine was competitive at the luminal and non-competitive at the antiluminal side of the intestine. Cycloleucine inhibited L-lysine transport in a non-competitive fashion at either side of the intestine. L-Lysine also interacted in a non-competitive fashion with L-cystine transport at the luminal membrane. In proximal convoluted tubules, the presence of L-arginine or ACPC caused a decrease in the transport of L-cystine and L-lysine. L-Valine exerted no effect. Furthermore, L-lysine and ACPC did not impair the reabsorption of L-valine significantly.These results suggest a functional heterogeneity between luminal and antiluminal membranes of renal and intestinal epithelia and the existence, at both membranes, of different transport sites for cystine and dibasic amino acids.


Author(s):  
Ruiqing Ni ◽  
Zhenyue Chen ◽  
Gloria Shi ◽  
Alessia Villois ◽  
Quanyu Zhou ◽  
...  

AbstractThe abnormal deposition of beta-amyloid proteins in the brain is one of the major histopathological hallmarks of Alzheimer’s disease. Currently available intravital microscopy techniques for high-resolution plaque visualization commonly involve highly invasive procedures and are limited to a small field-of-view within the rodent brain. Here, we report the transcranial detection of amyloid-beta deposits at the whole brain scale with 20 μm resolution in APP/PS1 and arcAβ mouse models of Alzheimer’s disease amyloidosis using a large-field multifocal (LMI) fluorescence microscopy technique. Highly sensitive and specific detection of amyloid-beta deposits at a single plaque level in APP/PS1 and arcAβ mice was facilitated using luminescent conjugated oligothiophene HS-169. Immunohistochemical staining with HS-169, anti-Aβ antibody 6E10, and conformation antibodies OC (fibrillar) of brain tissue sections further showed that HS-169 resolved compact parenchymal and vessel-associated amyloid deposits. The novel imaging platform offers new prospects for in vivo studies into Alzheimer’s disease mechanisms in animal models as well as longitudinal monitoring of therapeutic responses at a single plaque level.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhihong Dai ◽  
Furong Zhao ◽  
Ying Li ◽  
Jing Xu ◽  
Zhiyu Liu

Bromophenols (BPs), known as an important environmental contaminant, can cause endocrine disruption and other chronic toxicity. The study aimed to investigate the potential inhibitory capability of BPs on four human sulfotransferase isoforms (SULT1A1, SULT1A3, SULT1B1 and SULT1E1) and interpret how to interfere with endocrine hormone metabolism. P-nitrophenol(PNP) was utilized as a nonselective probe substrate, and recombinant SULT isoforms were utilized as the enzyme resources. PNP and its metabolite PNP-sulfate were analyzed using a UPLC-UV detecting system. SULT1A1 and SULT1B1 were demonstrated to be the most vulnerable SULT isoforms towards BPs’ inhibition. To determine the inhibition kinetics, 2,4,6-TBP and SULT1A3 were selected as the representative BPs and SULT isoform respectively. The competitive inhibition of 2,4,6-TBP on SULT1A3. The fitting equation was y=90.065x+1466.7, and the inhibition kinetic parameter (Ki) was 16.28 µM. In vitro-in vivo extrapolation (IVIVE) showed that the threshold concentration of 2,4,6-TBP to induce inhibition of SULT1A3 was 1.628 µM. In silico docking, the method utilized indicated that more hydrogen bonds formation contributed to the stronger inhibition of 3,5-DBP than 3-BP. In conclusion, our study gave the full description of the inhibition of BPs towards four SULT isoforms, which may provide a new perspective on the toxicity mechanism of BPs and further explain the interference of BPs on endocrine hormone metabolism.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5174
Author(s):  
Santosh R. Alluri ◽  
Yusuke Higashi ◽  
Kun-Eek Kil

Chemokines and chemokine receptors have been recognized as critical signal components that maintain the physiological functions of various cells, particularly the immune cells. The signals of chemokines/chemokine receptors guide various leukocytes to respond to inflammatory reactions and infectious agents. Many chemokine receptors play supportive roles in the differentiation, proliferation, angiogenesis, and metastasis of diverse tumor cells. In addition, the signaling functions of a few chemokine receptors are associated with cardiac, pulmonary, and brain disorders. Over the years, numerous promising molecules ranging from small molecules to short peptides and antibodies have been developed to study the role of chemokine receptors in healthy states and diseased states. These drug-like candidates are in turn exploited as radiolabeled probes for the imaging of chemokine receptors using noninvasive in vivo imaging, such as positron emission tomography (PET). Recent advances in the development of radiotracers for various chemokine receptors, particularly of CXCR4, CCR2, and CCR5, shed new light on chemokine-related cancer and cardiovascular research and the subsequent drug development. Here, we present the recent progress in PET radiotracer development for imaging of various chemokine receptors.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Michael Simmers ◽  
Ryan Feaver ◽  
Jim Turk ◽  
Banumathi Cole ◽  
M Sol Collado ◽  
...  

Introduction: There is an urgent unmet need to improve the predictive value of animal and in vitro systems for drug development. The purpose of this study was to develop an in vitro vascular system that reflects the in vivo biology of the cynomolgus macaque (cyno). Methods: We co-cultured endothelial (EC) and smooth muscle cells (SMC) from cyno arteries and exposed them to physiologically relevant hemodynamics. Cyno velocity profiles were obtained from arterial regions prone to atherosclerosis (atheroprone) or healthy regions. Velocity waveforms were applied to the co-culture along with oxidized LDL from cyno or humans, and TNFα, which are pathogenic in humans and mimic advanced inflammatory conditions (AIC). Using RNA sequencing, we quantified the response of the system to 4 different statin treatments (atorvastatin, simvastatin, cerivastatin, rosuvastatin) under AIC. Using computational analyses of differentially expressed genes (DEGs), we characterized the response of our system by identifying functional biological themes that were associated with each statin treatment. Results: We found that AIC in the cyno system dramatically increased inflammatory DEGs and decreased vascular health DEGs. Cerivastatin elicited the most DEGs in both the cyno and human vascular system while the response to rosuvastatin did not reach statistical significance for any genes. Statin treatment decreased inflammatory cytokine gene expression, but not adhesion molecule expression under AIC. Except for rosuvastatin, all statins tested significantly increased the expression of genes that promote vascular health, while suppressing the expression of inflammatory genes. Biological themes were regulated by statin treatment in both the human and cyno vascular systems including: cholesterol biosynthesis, thrombosis, ethanol degradation, cell cycle regulation and notch signaling. Finally, we discovered functional themes related to glycogen metabolism, which may be relevant as a potential mechanism driving the risk of hyperglycemia with statin treatment. Conclusions: The cyno vascular system described here mirrors many of the well-known phenotypes of the human vascular system, and should provide a valuable predictive tool for in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document