scholarly journals In vivo assessment of prostate cancer response using quantitative ultrasound characterization of ultrasonic scattering properties

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Deepa Sharma ◽  
Laurentius Oscar Osapoetra ◽  
Mateusz Faltyn ◽  
Anoja Giles ◽  
Martin Stanisz ◽  
...  

Abstract Background The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. Results The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. Conclusion Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.

2019 ◽  
Author(s):  
Vidyavathi Reddy ◽  
Asm Iskander ◽  
Clara Hwang ◽  
George Divine ◽  
Mani Menon ◽  
...  

AbstractTelomere stability is important for cell viability, as cells with telomere DNA damage that is not repaired do not survive. We reported previously that androgen receptor (AR) antagonist induces telomere DNA damage in androgen-sensitive LNCaP prostate cancer cells; this triggers a DNA damage response (DDR) at telomeres that includes activation of ATM, and blocking ATM activation prevents telomere DNA repair and leads to cell death. Remarkably, AR antagonist induces telomere DNA damage and triggers ATM activation at telomeres also in 22Rv1 castration-resistant prostate cancer (CRPC) cells that are not growth inhibited by AR antagonist. Treatment with AR antagonist enzalutamide (ENZ) or ATM inhibitor (ATMi) by itself had no effect on growth in vitro or in vivo, but combined treatment with ENZ plus ATMi significantly inhibited cell survival in vitro and tumor growth in vivo. By inducing telomere DNA damage and activating a telomere DDR, an opportunity to inhibit DNA repair and promote cell death was created, even in CRPC cells. 22Rv1 cells express both full-length AR and AR splice variant AR-V7, but full-length AR was found to be the predominant form of AR associated with telomeres and required for telomere stability. Although 22Rv1 growth of untreated 22Rv1 cells appears to be driven by AR-V7, it is, ironically, expression of full-length AR that makes them sensitive to growth inhibition by combined treatment with ENZ plus ATMi. Notably, this combined treatment approach to induce telomere DNA damage and inhibit the DDR was effective in inducing cell death also in other CRPC cell lines (LNCaP/AR and C4-2B). Thus, the use of ENZ in combination with a DDR inhibitor, such as ATMi, may be effective in prolonging disease-free survival of patients with AR-positive metastatic CRPC, even those that co-express AR splice variant.


2019 ◽  
Author(s):  
Ying V. Liu ◽  
Simrat Sodhi ◽  
Gilbert Xue ◽  
Derek Teng ◽  
Dzhalal Agakishiev ◽  
...  

AbstractPurposeShort-term improvements in retinal anatomy are known to occur in preclinical models of photoreceptor transplantation. However, correlative changes over the long term are poorly understood. We aimed to develop a quantifiable imaging biomarker grading scheme, using non-invasive multimodal confocal scanning laser ophthalmoscopy (cSLO) imaging, to enable serial evaluation of photoreceptor transplantation over the long term.MethodsYellow-green fluorescent microspheres were transplanted into the vitreous cavity and/or subretinal space of C57/BL6J mice. Photoreceptor cell suspensions or sheets from rhodopsin-green fluorescent protein mice were transplanted subretinally, into either NOD.CB17-Prkdcscid/J or C3H/HeJ-Pde6brd1 mice. Multimodal cSLO imaging was performed serially for up to three months after transplantation. Imaging biomarkers were scored, and a grade was defined for each eye by integrating the scores. Image grades were correlated with immunohistochemistry (IHC) data.ResultsMultimodal imaging enabled the extraction of quantitative imaging biomarkers including graft size, GFP intensity, graft length, on-target graft placement, intra-graft lamination, hemorrhage, retinal atrophy, and peri-retinal proliferation. Migration of transplanted material was observed. Changes in biomarker scores and grades were detected in 13/16 and 7/16 eyes, respectively. A high correlation was found between image grades and IHC parameters.ConclusionsSerial evaluation of multiple imaging biomarkers, when integrated into a per-eye grading scheme, enabled comprehensive tracking of longitudinal changes in photoreceptor cell grafts over time. The application of systematic multimodal in vivo imaging could be useful in increasing the efficiency of preclinical retinal cell transplantation studies in rodents and other animal models.


2014 ◽  
Vol 28 (10) ◽  
pp. 1629-1639 ◽  
Author(s):  
Yingqiu Xie ◽  
Wenfu Lu ◽  
Shenji Liu ◽  
Qing Yang ◽  
Brett S. Carver ◽  
...  

Castration-resistant prostate cancer (PCa) (CRPC) is relapse after various forms of androgen ablation therapy and causes a major mortality in PCa patients, yet the mechanism remains poorly understood. Here, we report the nuclear form of mesenchymal epithelial transition factor (nMET) is essential for CRPC. Specifically, nMET is remarkably increased in human CRPC samples compared with naïve samples. Androgen deprivation induces endogenous nMET and promotes cell proliferation and stem-like cell self-renewal in androgen-nonresponsive PCa cells. Mechanistically, nMET activates SRY (sex determining region Y)-box9, β-catenin, and Nanog homeobox and promotes sphere formation in the absence of androgen stimulus. Combined treatment of MET and β-catenin enhances the inhibition of PCa cell growth. Importantly, MET accumulation is detected in nucleus of recurrent prostate tumors of castrated Pten/Trp53 null mice, whereas MET elevation is predominantly found in membrane of naïve tumors. Our findings reveal for the first time an essential role of nMET association with SOX9/β-catenin in CRPC in vitro and in vivo, highlighting that nuclear RTK activate cell reprogramming to drive recurrence, and targeting nMET would be a new avenue to treat recurrent cancers.


2017 ◽  
Vol 4 (S) ◽  
pp. 17
Author(s):  
Toan Linh Nguyen ◽  
Ho Anh Son ◽  
LiFeng Zhang ◽  
Bui Khac Cuong ◽  
Hoang Van Tong ◽  
...  

Oncolytic viruses (OLVs) including measles and mumps viruses (MeV and MuV) have a potential to serve as a therapeutic option for cancers. We have previously shown that the combination of MeV and MuV synergistically kills various human haematological cancer cells. This study aims to investigate the anti-tumor activity of MeV, MuV and MeV-MuV combination (MM) against human solid malignancies in vitro and in vivo. The results showed that MeV, MuV and MM combination targeted and effectively killed various cancer cell lines of human solid malignancies but not normal cells. Notably, MM combination demonstrated a greater anti-tumor effect and prolonged survival in a human prostate cancer (PC3) xenograft tumour model compared to MeV and MuV. MeV, MuV and MM combination significantly induced the expression of immunogenic cell death (ICD) markers and enhanced spleen-infiltrating immune cells such as macrophages, natural killer and dendritic cells. Our study demonstrated that MM combination is a promising option for treatment of human solid malignancies and suggested that MM could induce immunogenic cell death of malignant cells and activate immunity against cancers.


2021 ◽  
Author(s):  
◽  
Haley Ataera

<p>The adoptive transfer of activated dendritic cells (DC) loaded with tumour antigen or tumour specific T cells improves weak anti-tumour responses, however, without treatments to relieve suppression, these therapies will continue to fall short of their full potential. The aim of this thesis was to understand the role of hypoxia-induced increases in adenosine and of CD4+ CD25+ Foxp3+ regulatory T cells (Treg) in the suppression of anti-tumour immune responses and to design strategies to abrogate these mechanisms. These aims were investigated using the B16.OVA murine melanoma model because the OVA specific CD4+ (OTII) and CD8+ (OTI) T cell transgenic mice allowed detailed investigation of Ag specific T cell responses. Recent studies have shown that the inhibition of adenosine signalling in activated CD8+ T cells can improve the anti-tumour activity of these cells. To investigate these findings using the B16.OVA model, tumour-bearing mice were given activated OTI T cells and the adenosine receptor inhibitor caffeine. Caffeine treatment did not improve the anti-tumour response, possibly because this response was suppressed due to the increased frequency of myeloid derived suppressor cells observed in mice that received T cells. To determine whether the defective function of tumour infiltrating DC (TIDC) in tumours is due to suppression by Treg, mice were treated with the anti-CD25 monoclonal antibody PC61 to deplete Treg and challenged with tumours. PC61 treatment caused a delay in tumour growth but did not affect DC frequency, or expression of the DC activation markers CD40, CD86 and MHC II in tumours or lymph nodes. DC function was tested using in vitro and in vivo T cell proliferation assays and was found to be unaffected by PC61 treatment. Studies in RAG1-/- mice, which lack Treg, also showed no improvement in DC activation status or function. These results show that Treg do not suppress TIDC in the B16.OVA model. It is well known, however, that Treg suppress T cell responses and it has been suggested that Treg may mediate some of this suppression by using the perforin-granzyme pathway to cause T cell death. To investigate this possibility, naive, perforin sufficient OTI T cells were transferred into normal and perforin knockout (PKO) mice, with or without PC61 treatment. To stimulate an OTI T cell response, mice also received OVA-loaded DC. Depletion of both normal and PKO Treg resulted in decreased death and increased proliferation of the transferred cells, increased expression of IFN-y and TNF-a, and improved in vivo target cell killing by the transferred cells. These findings indicate that perforin expression by Treg is not required to suppress T cell responses or cause T cell death. In conclusion, the results of this thesis were consistent with the observation that there are multiple suppressive mechanisms in tumours and that there is substantial redundancy of these mechanisms. Depletion of Treg was found to improve the anti-tumour response, however, suppression of the DC was still evident, demonstrating that the neutralisation of a single suppressive mechanism may not be sufficient to treat aggressive, late stage cancers such as melanoma.</p>


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 767-767
Author(s):  
Michal Abraham ◽  
Shiri Klein ◽  
Baruch Bulvik ◽  
Hanna Wald ◽  
Dvora Holam ◽  
...  

Abstract Background: Acute Myeloid Leukemia (AML) is a heterogeneous group of diseases characterized by uncontrolled proliferation and survival of hematopoietic stem and progenitor cells. The chemokine CXCL12 and its receptor CXCR4 are key players in the survival, bone marrow (BM) retention and the maintenance of AML blasts in their stemness state. CXCR4 overexpression is associated with poor prognosis in AML patients. Signaling activated through CXCR4 was shown to be detrimental by increasing survival of tumor cells and promoting resistance to therapy. Objective: To study the effect of the CXCR4-antagonist, BL-8040, on the survival of human AML blasts and to investigate the molecular mechanism by which inhibition of CXCR4 signaling leads to leukemia cell death. Methods: Human AML cell lines and human primary AML samples were used for in vitro studies. The in-vivo effect of BL-8040 was tested using the MV4-11, U-937, THP-1 cells and human primary AML cells engrafted in NOD scid gamma (NSG) mice. Results: We found that BL-8040 directly induced apoptosis of AML cells both in FLT3-ITD and FLT3-WT AML, in-vitro and in-vivo. BL-8040 treatment triggered mobilization of AML blasts from their protective BM microenvironment and induced their terminal differentiation, in-vitro and in-vivo. The apoptosis of AML cells induced by BL-8040 was attributed to miR-15a/miR-16-1 up-regulation resulting in down-regulation of their target genes BCL-2, MCL-1 and cyclin-D1. The increase in miR-15a/miR-16-1 levels directly induced AML cell death. Moreover, CXCR4 blockade by BL-8040 also inhibited survival signals by the ERK/AKT kinases enhancing the apoptosis effect. Survival of AML cells was found to be dependent on BCL-2 as demonstrated by the ability of the BCL-2 inhibitor, ABT-199, to induce dose dependent apoptosis in vitro. It was reported that the MCL-1 protein plays a key role in acquiring resistance to ABT-199. We found that BL-8040 synergizes with ABT-199 in inducing AML cell death. This could be attributed to the reduction of both, AKT/ERK and MCL-1 levels, by treatment with BL-8040. In addition, BL-8040 synergizes with the FLT3 inhibitor AC220 in the induction of AML cell death both in-vivo and in-vitro. The combined treatment of BL-8040 and AC220 was found to prolong survival and reduce minimal residual disease in-vivo. Interestingly, the combined treatment was also associated with a significant reduction in the expression of BCL-2 and ERK signaling. Conclusions: BL-8040 can be a potential therapeutic option in AML by targeting not only AML anchorage in the BM but also AML survival and differentiation. Our results demonstrate that BL-8040 in AML regulates the expression of miR-15a/16-1 and their target genes BCL-2, MCL-1 and cyclin-D1. Furthermore, these results indicate that the CXCR4 antagonist, BL-8040 may tip the balance toward cell death by down- regulating survival signals through miR-15a/16-1 pathway and inhibition of the ERK/AKT survival signaling cascade in AML cells. Our results provide rational for combination of BL-8040 with ABT-199 to overcome potential acquired resistance to ABT-199 in AML patients. The synergistic effect of BL-8040 with AC220 could provide a rational basis for the combination of BL-8040 with FLT3 inhibitors in FLT3-ITD AML patient population. Figure 1. Figure 1. Figure 2. Figure 2. Figure 3. Figure 3. Disclosures Abraham: Biokine Therapeutics Ltd: Employment. Bulvik:Biokine Therapeutics Ltd: Employment. Wald:Biokine Therapeutics Ltd: Employment. Eizenberg:Biokine Therapeutics Ltd: Employment. Pereg:BioLineRx Ltd: Employment. Peled:Biokine Therapeutics Ltd: Consultancy, Employment.


2008 ◽  
Vol 22 (S2) ◽  
pp. 339-339
Author(s):  
Perry A Christian ◽  
Jeffery A Thorpe ◽  
Steven R Schwarze

2017 ◽  
Vol 114 (43) ◽  
pp. 11482-11487 ◽  
Author(s):  
Madhuchhanda Kundu ◽  
Avik Roy ◽  
Kalipada Pahan

Cancer cells are adept at evading cell death, but the underlying mechanisms are poorly understood. IL-12 plays a critical role in the early inflammatory response to infection and in the generation of T-helper type 1 cells, favoring cell-mediated immunity. IL-12 is composed of two different subunits, p40 and p35. This study underlines the importance of IL-12 p40 monomer (p40) in helping cancer cells to escape cell death. We found that different mouse and human cancer cells produced greater levels of p40 than p40 homodimer (p402), IL-12, or IL-23. Similarly, the serum level of p40 was much greater in patients with prostate cancer than in healthy control subjects. Selective neutralization of p40, but not p402, by mAb stimulated death in different cancer cells in vitro and in vivo in a tumor model. Interestingly, p40 was involved in the arrest of IL-12 receptor (IL-12R) IL-12Rβ1, but not IL-12Rβ2, in the membrane, and that p40 neutralization induced the internalization of IL-12Rβ1 via caveolin and caused cancer cell death via the IL-12–IFN-γ pathway. These studies identify a role of p40 monomer in helping cancer cells to escape cell death via suppression of IL-12Rβ1 internalization.


2014 ◽  
Vol 42 (2) ◽  
pp. 328-354 ◽  
Author(s):  
Ronald Boellaard ◽  
Roberto Delgado-Bolton ◽  
Wim J. G. Oyen ◽  
Francesco Giammarile ◽  
Klaus Tatsch ◽  
...  

Abstract The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings.


Sign in / Sign up

Export Citation Format

Share Document