akad nauk sssr
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 71 (1) ◽  
pp. 147-154
Author(s):  
Sumit Singh ◽  
Brij K. Tyagi ◽  
Manoj Bhardwaj

Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α 1) and (𝓘, 𝓙-α 4) of Cp (X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local αi -properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α 1) and (𝓘, 𝓙-α 4) properties of Cp (X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which Cp (X) does not have (𝓘, 𝓙-α 1) and (𝓘, 𝓙-α 4) properties.



2019 ◽  
Vol 875 ◽  
pp. 961-973 ◽  
Author(s):  
Shadab Alam ◽  
Anirban Guha ◽  
Mahendra K. Verma

According to the celebrated Bolgiano–Obukhov (Bolgiano, J. Geophys. Res., vol. 64 (12), 1959, pp. 2226–2229; Obukhov, Dokl. Akad. Nauk SSSR, vol. 125, 1959, p. 1246) phenomenology for moderately stably stratified turbulence, the energy spectrum in the inertial range shows a dual scaling: the kinetic energy follows (i) ${\sim}k^{-11/5}$ for $k<k_{B}$, and (ii) ${\sim}k^{-5/3}$ for $k>k_{B}$, where $k_{B}$ is the Bolgiano wavenumber. The $k^{-5/3}$ scaling, akin to passive scalar turbulence, is a direct consequence of the assumption that buoyancy is insignificant for $k>k_{B}$. We revisit this assumption, and using the constancy of kinetic and potential energy fluxes and simple theoretical analysis, we find that the $k^{-5/3}$ spectrum is absent. This is because the velocity field at small scales is too weak to establish a constant kinetic energy flux as in passive scalar turbulence. A quantitative condition for the existence of the second regime is also derived in the paper.



2018 ◽  
Vol 856 ◽  
pp. 426-443 ◽  
Author(s):  
M. Meldi ◽  
L. Djenidi ◽  
R. Antonia

This paper investigates the effect of a finite Reynolds number (FRN) on the flatness factor ($F$) of the velocity derivative in decaying homogeneous isotropic turbulence by applying the eddy damped quasi-normal Markovian (EDQNM) method to calculate all terms in an analytic expression for $F$ (Djenidi et al., Phys. Fluids, vol. 29 (5), 2017b, 051702). These terms and hence $F$ become constant when the Taylor microscale Reynolds number, $Re_{\unicode[STIX]{x1D706}}$ exceeds approximately $10^{4}$. For smaller values of $Re_{\unicode[STIX]{x1D706}}$, $F$, like the skewness $-S$, increases with $Re_{\unicode[STIX]{x1D706}}$; this behaviour is in quantitative agreement with experimental and direct numerical simulation data. These results indicate that one must first ensure that $Re_{\unicode[STIX]{x1D706}}$ is large enough for the FRN effect to be negligibly small before the hypotheses of Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941a, pp. 301–305; Dokl. Akad. Nauk SSSR, vol. 32, 1941b, pp. 16–18; J. Fluid Mech., vol. 13, 1962, pp. 82–85) can be assessed unambiguously. An obvious implication is that results from experiments and direct numerical simulations for which $Re_{\unicode[STIX]{x1D706}}$ is well below $10^{4}$ may not be immune from the FRN effect. Another implication is that a power-law increase of $F$ with respect to $Re_{\unicode[STIX]{x1D706}}$, as suggested by the Kolmogorov 1962 theory, is not tenable when $Re_{\unicode[STIX]{x1D706}}$ is large enough.



2018 ◽  
Vol 25 (3) ◽  
pp. 357-361
Author(s):  
Larry Gogoladze ◽  
Vakhtang Tsagareishvili

AbstractIn the paper, we investigate the relation between the properties of functions and their Fourier–Haar coefficients. We show that for some classes of functions Fourier–Haar coefficients have constant signs and order of magnitude. In 1964, Golubov proved in [B. I. Golubov, On Fourier series of continuous functions with respect to a Haar system (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 1964, 1271–1296] that if {f(x)\in C(0,1)}, then its Fourier–Haar coefficients have constant signs when {f(x)} is a nonincreasing function on {[0,1]}, and in some cases those coefficients have a certain order of magnitude. In the present paper, we continue to investigate the properties of functions which follow from the behavior of their Fourier–Haar coefficients.



2017 ◽  
Vol 20 (01) ◽  
pp. 1750022 ◽  
Author(s):  
Carlo Gasparetto ◽  
Filippo Gazzola

We consider a class of Hill equations where the periodic coefficient is the squared solution of some Duffing equation plus a constant. We study the stability of the trivial solution of this Hill equation and we show that a criterion due to Burdina [Boundedness of solutions of a system of differential equations, Dokl. Akad. Nauk. SSSR 92 (1953) 603–606] is very helpful for this analysis. In some cases, we are also able to determine exact solutions in terms of Jacobi elliptic functions. Overall, we obtain a fairly complete picture of the stability and instability regions. These results are then used to study the stability of nonlinear modes in some beam equations.



2016 ◽  
Vol 26 (08) ◽  
pp. 1573-1595 ◽  
Author(s):  
Christian Herrmann ◽  
Yasuyuki Tsukamoto ◽  
Martin Ziegler

The consistency problem for a class of algebraic structures asks for an algorithm to decide, for any given conjunction of equations, whether it admits a non-trivial satisfying assignment within some member of the class. For the variety of all groups, this is the complement of the triviality problem, shown undecidable by by Adyan [Algorithmic unsolvability of problems of recognition of certain properties of groups. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 103 (1955) 533–535] and Rabin [Recursive unsolvability of group theoretic problems, Ann. of Math. (2) 67 (1958) 172–194]. For the class of finite groups, it amounts to the triviality problem for profinite completions, shown undecidable by Bridson and Wilton [The triviality problem for profinite completions, Invent. Math. 202 (2015) 839–874]. We derive unsolvability of the consistency problem for the class of (finite) modular lattices and various subclasses; in particular, the class of all subspace lattices of finite-dimensional vector spaces over a fixed or arbitrary field of characteristic [Formula: see text] and expansions thereof, e.g. the class of subspace ortholattices of finite-dimensional Hilbert spaces. The lattice results are used to prove unsolvability of the consistency problem for (finite) rings with unit and (finite) representable relation algebras. These results in turn apply to equations between simple expressions in Grassmann–Cayley algebra and to functional and embedded multivalued dependencies in databases.



2016 ◽  
Vol 788 ◽  
pp. 602-613 ◽  
Author(s):  
J. F. Morrison ◽  
M. Vallikivi ◽  
A. J. Smits

The inertial-subrange scaling of the axial velocity component is examined for the centreline of turbulent pipe flow for Reynolds numbers in the range $249\leqslant Re_{{\it\lambda}}\leqslant 986$. Estimates of the dissipation rate are made by both integration of the one-dimensional dissipation spectrum and the third-order moment of the structure function. In neither case does the non-dimensional dissipation rate asymptote to a constant; rather than decreasing, it increases indefinitely with Reynolds number. Complete similarity of the inertial range spectra is not evident: there is little support for the hypotheses of Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 32, 1941a, pp. 16–18; Dokl. Akad. Nauk SSSR, vol. 30, 1941b, pp. 301–305) and the effects of Reynolds number are not well represented by Kolmogorov’s ‘extended similarity hypothesis’ (J. Fluid Mech., vol. 13, 1962, pp. 82–85). The second-order moment of the structure function does not show a constant value, even when compensated by the extended similarity hypothesis. When corrected for the effects of finite Reynolds number, the third-order moments of the structure function accurately support the ‘four-fifths law’, but they do not show a clear plateau. In common with recent work in grid turbulence, non-equilibrium effects can be represented by a heuristic scaling that includes a global Reynolds number as well as a local one. It is likely that non-equilibrium effects appear to be particular to the nature of the boundary conditions. Here, the principal effects of the boundary conditions appear through finite turbulent transport at the pipe centreline, which constitutes a source or a sink at each wavenumber.



2015 ◽  
Vol 11 (08) ◽  
pp. 2451-2486
Author(s):  
Xian-Jin Li

In 1940, Weil [Sur les fonctions algébriques à corps de constantes finis, C. R. Acad. Sci. Paris210 (1940) 592–594] proved the Riemann hypothesis for curves over finite fields. It follows from the Castelnuovo–Severi defect inequality concerning correspondences between algebraic curves (see [A. Mattuck and J. Tate, On the inequality of Castelnuovo–Severi, Abh. Math. Sem. Univ. Hamburg22 (1958) 295–299]). An important step in the proof of Castelnuovo–Severi's defect inequality is the invariance of the Castelnuovo–Severi defect under trivial correspondences, so that the degree of divisors can be modified by adding multiples of trivial correspondences. In the number field case, the Weil distribution Δ(h) (see [A. Weil, Sur les formules explicites de la théorie des nombres, Izv. Akad. Nauk SSSR Ser. Mat.36 (1972) 3–18]) corresponds to the Castelnuovo–Severi defect. Functions of the form ∑ξ∈K* f(ξx) with f in the Schwartz–Bruhat space S(𝔸)0 correspond to trivial correspondences. In this paper, we show that the two terms [Formula: see text] and [Formula: see text] in the Weil distribution can be chosen to be zero by adding "trivial correspondences" to h while keeping the Weil distribution essentially unchanged. As an application of this result, the Weil distribution is expressed as the spectral trace of an operator on a Hilbert space.



2015 ◽  
Vol 23 (4) ◽  
Author(s):  
Fikret Gölgeleyen ◽  
Masahiro Yamamoto

AbstractIn this paper, we discuss an inverse problem for the Vlasov–Poisson system. We prove local uniqueness and stability theorems by using the method in Anikonov and Amirov [Dokl. Akad. Nauk SSSR 272 (1983), 1292–1293] under the specular reflection boundary condition and with a prescribed outward electrical field at the boundary.



2014 ◽  
Vol 762 ◽  
pp. 196-231 ◽  
Author(s):  
Yue-Kin Tsang ◽  
David G. Dritschel

AbstractWe examine the basic properties and stability of isolated vortices having uniform potential vorticity (PV) in a non-hydrostatic rotating stratified fluid, under the Boussinesq approximation. For simplicity, we consider a uniform background rotation and a linear basic-state stratification for which both the Coriolis and buoyancy frequencies, $f$ and $N$, are constant. Moreover, we take $f/N\ll 1$, as typically observed in the Earth’s atmosphere and oceans. In the small Rossby number ‘quasi-geostrophic’ (QG) limit, when the flow is weak compared to the background rotation, there exist exact solutions for steadily rotating ellipsoidal volumes of uniform PV in an unbounded flow (Zhmur & Shchepetkin, Izv. Akad. Nauk SSSR Atmos. Ocean. Phys., vol. 27, 1991, pp. 492–503; Meacham, Dyn. Atmos. Oceans, vol. 16, 1992, pp. 189–223). Furthermore, a wide range of these solutions are stable as long as the horizontal and vertical aspect ratios ${\it\lambda}$ and ${\it\mu}$ do not depart greatly from unity (Dritschel et al.,J. Fluid Mech., vol. 536, 2005, pp. 401–421). In the present study, we examine the behaviour of ellipsoidal vortices at Rossby numbers up to near unity in magnitude. We find that there is a monotonic increase in stability as one varies the Rossby number from nearly $-1$ (anticyclone) to nearly $+1$ (cyclone). That is, QG vortices are more stable than anticyclones at finite negative Rossby number, and generally less stable than cyclones at finite positive Rossby number. Ageostrophic effects strengthen both the rotation and the stratification within a cyclone, enhancing its stability. The converse is true for an anticyclone. For all Rossby numbers, stability is reinforced by increasing ${\it\lambda}$ towards unity or decreasing ${\it\mu}$. An unstable vortex often restabilises by developing a near-circular cross-section, typically resulting in a roughly ellipsoidal vortex, but occasionally a binary system is formed. Throughout the nonlinear evolution of a vortex, the emission of inertia–gravity waves (IGWs) is negligible across the entire parameter space investigated. Thus, vortices at small to moderate Rossby numbers, and any associated instabilities, are (ageostrophically) balanced. A manifestation of this balance is that, at finite Rossby number, an anticyclone rotates faster than a cyclone.



Sign in / Sign up

Export Citation Format

Share Document