scholarly journals ON ANALYSIS OF FRACTIONAL ORDER MATHEMATICAL MODEL OF HEPATITIS B USING ATANGANA–BALEANU CAPUTO (ABC) DERIVATIVE

Fractals ◽  
2021 ◽  
pp. 2240017 ◽  
Author(s):  
ANWARUD DIN ◽  
YONGJIN LI ◽  
FAIZ MUHAMMAD KHAN ◽  
ZIA ULLAH KHAN ◽  
PEIJIANG LIU

The scaling exponent of a hierarchy of cities used to be regarded as a fractional. This paper investigates a newly constructed system of equation for Hepatitis B disease in sense of Atanganaa–Baleanu Caputo (ABC) fractional order derivative. The proposed approach has five distinctive quantities, namely, susceptible, acute infections, chronic infection, immunized and vaccinated populace. By applying some well-known results of fixed point theory, we find the Ulam–Hyers type stability and qualitative analysis of the candidate solution. The deterministic stability for the proposed system is also computed. We apply well-known transform due to Laplace and decomposition techniques (LADM) and Adomian polynomial for nonlinear terms for computing the series solution for the proposed model. Graphical results show that LADM is an efficient and robust method for solving nonlinear problems.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shabir Ahmad ◽  
Aman Ullah ◽  
Ali Akgül ◽  
Manuel De la Sen

HIV, like many other infections, is a severe and lethal infection. Fractal-fractional operators are frequently used in modeling numerous physical processes in the current decade. These operators provide better dynamics of a mathematical model because these are the generalization of integer and fractional-order operators. This paper aims to study the dynamics of the HIV model during primary infection by fractal-fractional Atangana–Baleanu (AB) operators. The sufficient conditions for the existence and uniqueness of the solution of the proposed model under the AB operator are derived via fixed point theory. The numerical scheme is presented by using the Adams–Bashforth method. Numerical results are demonstrated for different fractal and fractional orders to see the effect of fractional order and fractal dimension on the dynamics of HIV and CD4+ T-cells during primary infection.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Aman Ullah ◽  
Thabet Abdeljawad ◽  
Shabir Ahmad ◽  
Kamal Shah

In this article, we discuss the existence and uniqueness of the solution of the fractional-order epidemic model of childhood diseases by using fixed point theory. The technique of natural transform coupled with the Adomian decomposition is used to find the solution of the proposed model. At the end of the article, the model is demonstrated with appropriate numerical and graphical description.


Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Mudasir Younis ◽  
Deepak Singh ◽  
Adrian Petruşel

The purpose of this article is twofold. Firstly, combining concepts of graph theory and of fixed point theory, we will present a fixed point result for Kannan type mappings, in the framework of recently introduced, graphical b-metric spaces. Appropriate examples of graphs validate the established theory. Secondly, our focus is to apply the proposed results to some nonlinear problems which are meaningful in engineering and science. Some open problems are proposed.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769006 ◽  
Author(s):  
Devendra Kumar ◽  
Jagdev Singh ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu

In this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo–Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given graphically to observe the effects of the fractional order derivative on the growth of population.


Fractals ◽  
2021 ◽  
Author(s):  
ANWAR ZEB ◽  
SUNIL KUMAR ◽  
TAREQ SAEED

The social habit of smoking has affected the whole world in a social manner. It is the main cause of diseases like cancers, asthma, bad breath, etc., and a source of spreading of infectious diseases like COVID-19. This work is related to an existing smoking model with relapse habit converted in fractional order. First, formulation of fractional-order smoking model is presented and then the dynamics of proposed problem is analyzed. Fixed-point theory via Banach contraction and Schauder theorems is used to derive the existence and uniqueness of the model. At last, the adaptive predictor–corrector algorithm and Runge–Kutta fourth-order (RK4) strategy are used to perform simulation. To bolster the validity of the theoretical results, a set of numerical simulations are performed. A good agreement between hypothetical and numerical results is demonstrated via numerical simulations using MATLAB software.


2019 ◽  
Vol 9 (1) ◽  
pp. 292-304 ◽  
Author(s):  
Renata Bunoiu ◽  
Radu Precup

Abstract We propose a method for the localization of solutions for a class of nonlinear problems arising in the homogenization theory. The method combines concepts and results from the linear theory of PDEs, linear periodic homogenization theory, and nonlinear functional analysis. Particularly, we use the Moser-Harnack inequality, arguments of fixed point theory and Ekeland's variational principle. A significant gain in the homogenization theory of nonlinear problems is that our method makes possible the emergence of finitely or infinitely many solutions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shahram Rezapour ◽  
Hakimeh Mohammadi

Abstract We study the SEIR epidemic model for the spread of AH1N1 influenza using the Caputo–Fabrizio fractional-order derivative. The reproduction number of system and equilibrium points are calculated, and the stability of the disease-free equilibrium point is investigated. We prove the existence of solution for the model by using fixed point theory. Using the fractional Euler method, we get an approximate solution to the model. In the numerical section, we present a simulation to examine the system, in which we calculate equilibrium points of the system and examine the behavior of the resulting functions at the equilibrium points. By calculating the results of the model for different fractional order, we examine the effect of the derivative order on the behavior of the resulting functions and obtained numerical values. We also calculate the results of the integer-order model and examine their differences with the results of the fractional-order model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ting Cui ◽  
Peijiang Liu ◽  
Anwarud Din

AbstractIn this paper, we investigate an norovirus (NoV) epidemic model with stochastic perturbation and the new definition of a nonlocal fractal–fractional derivative in the Atangana–Baleanu–Caputo (ABC) sense. First we present some basic properties including equilibria and the basic reproduction number of the model. Further, we analyze that the proposed stochastic system has a unique global positive solution. Next, the sufficient conditions of the extinction and the existence of a stationary probability measure for the disease are established. Furthermore, the fractal–fractional dynamics of the proposed model under Atangana–Baleanu–Caputo (ABC) derivative of fractional order “$${p}$$ p ” and fractal dimension “$${q}$$ q ” have also been addressed. Besides, coupling the non-linear functional analysis with fixed point theory, the qualitative analysis of the proposed model has been performed. The numerical simulations are carried out to demonstrate the analytical results. It is believed that this study will comprehensively strengthen the theoretical basis for comprehending the dynamics of the worldwide contagious diseases.


Sign in / Sign up

Export Citation Format

Share Document