scholarly journals Single-Larva RNA Sequencing Identifies Markers of Copper Toxicity and Exposure in Early Mytilus californianus Larvae

2021 ◽  
Vol 12 ◽  
Author(s):  
Megan R. Hall ◽  
Andrew Y. Gracey

One of the challenges facing efforts to generate molecular biomarkers for toxins is distinguishing between markers that are indicative of exposure and markers that provide evidence of the effects of toxicity. Phenotypic anchoring provides an approach to help segregate markers into these categories based on some phenotypic index of toxicity. Here we leveraged the mussel embryo-larval toxicity assay in which toxicity is estimated by the fraction of larvae that exhibit an abnormal morphology, to isolate subsets of larvae that were abnormal and thus showed evidence of copper-toxicity, versus others that while exposed to copper exhibited normal morphology. Mussel larvae reared under control conditions or in the presence of increasing levels of copper (3–15 μg/L Cu2+) were physically sorted according to whether their morphology was normal or abnormal, and then profiled using RNAseq. Supervised differential expression analysis identified sets of genes whose differential expression was specific to the pools of abnormal larvae versus normal larvae, providing putative markers of copper toxicity versus exposure. Markers of copper exposure and copper-induced abnormality were involved in many of the same pathways, including development, shell formation, cell adhesion, and oxidative stress, yet unique markers were detected in each gene set. Markers of effect appeared to be more resolving between phenotypes at the lower copper concentration, while markers of exposure were informative at both copper concentrations.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jan K. Nowak ◽  
Marzena Dworacka ◽  
Nazgul Gubaj ◽  
Arystan Dossimov ◽  
Zhumabek Dossimov ◽  
...  

Abstract Background The expression profiles of the intestinal mucosa have not been comprehensively investigated in asthma. We aimed to explore this in the Correlated Expression and Disease Association Research (CEDAR) patient cohort. Methods Differential expression analysis of ileal, transverse colon, and rectal biopsies were supplemented by a comparison of transcriptomes from platelets and leukocytes subsets, including CD4+, CD8+, CD14+, CD15+, and CD19+ cells. Asthma patients (n = 15) and controls (n = 15) had similar age (p = 0.967), body mass index (p = 0.870), similar numbers of females (80%) and smoking rates (13.3%). Results Significant differential expression was found in the ileum alone, and not in any other cell/tissue types. More genes were found to be overexpressed (1,150) than under-expressed (380). The most overexpressed genes included Fc Fragment of IgG Binding Protein (FCGBP, logFC = 3.01, pFDR = 0.015), Mucin 2 (MUC2, logFC = 2.78, pFDR = 0.015), and Alpha 1B Defensin (DEFA1B, logFC = 2.73, pFDR = 0.024). Gene ontology implicated the immune system, including interleukins 4 and 13, as well as antimicrobial peptides in this overexpression. There was concordance of gene over- (STAT1, XBP1) and underexpression (NELF, RARA) in asthma and Crohn’s disease ileum when our results were compared to another dataset (p = 3.66 × 10–7). Conclusion Ileal mucosa in asthma exhibits a specific transcriptomic profile, which includes the overexpression of innate immune genes, mostly characteristic of Paneth and goblet cells, in addition to other changes that may resemble Crohn’s disease.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matthew Chung ◽  
Vincent M. Bruno ◽  
David A. Rasko ◽  
Christina A. Cuomo ◽  
José F. Muñoz ◽  
...  

AbstractAdvances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.


2021 ◽  
Vol 20 ◽  
pp. 153303382110049
Author(s):  
Bei Li ◽  
Long Fang ◽  
Baolong Wang ◽  
Zengkun Yang ◽  
Tingbao Zhao

Osteosarcoma often occurs in children and adolescents and causes poor prognosis. The role of RNA-binding proteins (RBPs) in malignant tumors has been elucidated in recent years. Our study aims to identify key RBPs in osteosarcoma that could be prognostic factors and treatment targets. GSE33382 dataset was downloaded from Gene Expression Omnibus (GEO) database. RBPs extraction and differential expression analysis was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to explore the biological function of differential expression RBPs. Moreover, we constructed Protein-protein interaction (PPI) network and obtained key modules. Key RBPs were identified by univariate Cox regression analysis and multiple stepwise Cox regression analysis combined with the clinical information from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Risk score model was generated and validated by GSE16091 dataset. A total of 38 differential expression RBPs was identified. Go and KEGG results indicated these RBPs were significantly involved in ribosome biogenesis and mRNA surveillance pathway. COX regression analysis showed DDX24, DDX21, WARS and IGF2BP2 could be prognostic factors in osteosarcoma. Spearman’s correlation analysis suggested that WARS might be important in osteosarcoma immune infiltration. In conclusion, DDX24, DDX21, WARS and IGF2BP2 might play key role in osteosarcoma, which could be therapuetic targets for osteosarcoma treatment.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Xueyi Dong ◽  
Luyi Tian ◽  
Quentin Gouil ◽  
Hasaru Kariyawasam ◽  
Shian Su ◽  
...  

Abstract Application of Oxford Nanopore Technologies’ long-read sequencing platform to transcriptomic analysis is increasing in popularity. However, such analysis can be challenging due to the high sequence error and small library sizes, which decreases quantification accuracy and reduces power for statistical testing. Here, we report the analysis of two nanopore RNA-seq datasets with the goal of obtaining gene- and isoform-level differential expression information. A dataset of synthetic, spliced, spike-in RNAs (‘sequins’) as well as a mouse neural stem cell dataset from samples with a null mutation of the epigenetic regulator Smchd1 was analysed using a mix of long-read specific tools for preprocessing together with established short-read RNA-seq methods for downstream analysis. We used limma-voom to perform differential gene expression analysis, and the novel FLAMES pipeline to perform isoform identification and quantification, followed by DRIMSeq and limma-diffSplice (with stageR) to perform differential transcript usage analysis. We compared results from the sequins dataset to the ground truth, and results of the mouse dataset to a previous short-read study on equivalent samples. Overall, our work shows that transcriptomic analysis of long-read nanopore data using long-read specific preprocessing methods together with short-read differential expression methods and software that are already in wide use can yield meaningful results.


Author(s):  
Yongmei Wang ◽  
Guimin Zhang ◽  
Ruixian Wang

Background: This study aims to explore the prognostic values of CT83 and CT83-related genes in lung adenocarcinoma (LUAD). Methods: We downloaded the mRNA profiles of 513 LUAD patients (RNA sequencing data) and 246 NSCLC patients (Affymetrix Human Genome U133 Plus 2.0 Array) from TCGA and GEO databases. According to the median expression of CT83, the TCGA samples were divided into high and low expression groups, and differential expression analysis between them was performed. Functional enrichment analysis of differential expression genes (DEGs) was conducted. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal prognostic DEGs. Then we established the prognostic model. A Nomogram model was constructed to predict the overall survival (OS) probability of LUAD patients. Results: CT83 expression was significantly correlated to the prognosis of LUAD patients. A total of 59 DEGs were identified, and a predictive model was constructed based on six optimal CT83-related DEGs, including CPS1, RHOV, TNNT1, FAM83A, IGF2BP1, and GRIN2A, could effectively predict the prognosis of LUAD patients. The nomogram could reliably predict the OS of LUAD patients. Moreover, the six important immune checkpoints (CTLA4, PD1, IDO1, TDO2, LAG3, and TIGIT) were closely correlated with the Risk Score, which was also differentially expressed between the LUAD samples with high and low-Risk Scores, suggesting that the poor prognosis of LUAD patients with high-Risk Score might be due to the immunosuppressive microenvironments. Conclusion: A prognostic model based on six optimal CT83 related genes could effectively predict the prognosis of LUAD patients.


Sign in / Sign up

Export Citation Format

Share Document