salt migration
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 25)

H-INDEX

8
(FIVE YEARS 2)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Francesco Corrias ◽  
Efisio Scano ◽  
Giorgia Sarais ◽  
Alberto Angioni

Swordfish is the most widespread billfish in the aquatic environment. The industrial processing of swordfish fillets involves salting, drying, and smoking steps. Salting techniques, dry or wet, are the most common method of fish preservation. This work evaluated salt diffusion in swordfish fillets after traditional dry salting and wet industrial injection salting methods. The data obtained from the dry salting studies highlighted that the salt diffusion process in swordfish meat was an unfavorable process depending on the contact time with the salt/meat. Moreover, irregularly shaped fillets negatively affected the salt migration in the different areas, leading to inhomogeneous and possibly unsafe final products. On the contrary, wet injection salting was suitable for processing swordfish fillets. As a result, the final products had a homogeneous salt concentration, maintained the organoleptic characteristics and health benefits for a long period, and achieved a longer shelf-life. Furthermore, the water activity (aw) values detected for the different processed fillets confirmed the physicochemical features of the final products and allow the classification of safe products. Moreover, injection salting is a quick process compatible with industrial production times.


2021 ◽  
pp. 127403
Author(s):  
Mengqin Wang ◽  
Yan Zhu ◽  
Tianxing Zhao ◽  
Lihong Cui ◽  
Wei Mao ◽  
...  

2021 ◽  
Author(s):  
◽  
John Ross Keys

<p>Salts are widespread in the cold, arid McMurdo region of Antarctica. They exist in a variety of deposit types from massive subglacial and sub-lake deposits containing up to 1010 kilograms of salt, down to traces in soil, snow and ice. However, deposits on rock and soil typically amount to a few grams of salt. At least 30 salt phases are known but only 10 of these are widespread. These 10 are thenardite, gypsum, halite, calcite, darapskite, soda nitre, mirabilite, bloedite, epsomite and hexahydrite. The distribution of salts has been examined on two scales, local and regional. The local scale extends from individual deposits to areas of a few square kilometres. The regional scale covers McMurdo oasis, McMurdo Sound and Ross Island, though areas in McMurdo oasis, and particularly Taylor Valley receive most attention. Local distribution is controlled by salt migration and separation. Migration is induced by water and wind, with soil brines moving as thin liquid films, by capillarity and under the influence of gravity. Deflation and asymmetric salt accumulation provide evidence that wind is important. Separation of phases is a consequence of different physico-chemical properties of salts, and environmental conditions, including site aspect, ambient temperature and humidity. Eutectic temperature is a fundamental salt property but solubility is also important. Several salt deposits containing separated (fractionated) phases have been found in the region. Separation is achieved mainly by fractional dissolution and crystallization and the most evolved product of the general separation sequence is calcium chloride. The separation processes, together with salt migration, obscure the sources of the salts. Regional distribution of salts has been characterized by determining the relative frequency at which specific phases are encountered at increasing distance from the coast and above sea level. Chloride and sodium phases decrease, whereas magnesium phases increase in frequency away from the coast. Sulphates-to-chloride and nitrates-to-chloride ratios increase with increasing distance. Calcium and carbonate show little change except in Taylor Valley where a marked decrease is apparent. This regional distribution is mainly dependent on the sources of the salts. The marine source is most important, contributing almost all of the chloride, sodium, sulphate and probably nitrate ions that are present. Chemical weathering is the predominant source of magnesium, calcium and carbonate ions probably via reactions of mafic, ferromagnesian minerals in local rocks and regolith. Biological and volcanic activity are locally significant at eastern Taylor Valley and in the summit area of Erebus Volcano, respectively. The salts have accumulated over the lifetime of the region, that is over less than the last 20-25 Ma or so. There is no evidence that they are relics from earlier, preglacial times, except for very minor amounts of gypsum and calcium carbonate. There has been a recent influx of sea water into Taylor Valley perhaps between 50,000 and 20,000 years ago, and evaporation of this water has preceded advance of Taylor Glacier over part of the resulting salt deposit. The continuing interaction between glacier and salt is causing basal ice to melt and producing aperiodic discharges of up to a few thousand cubic metres of salty water from the terminus of the glacier.</p>


2021 ◽  
Author(s):  
◽  
John Ross Keys

<p>Salts are widespread in the cold, arid McMurdo region of Antarctica. They exist in a variety of deposit types from massive subglacial and sub-lake deposits containing up to 1010 kilograms of salt, down to traces in soil, snow and ice. However, deposits on rock and soil typically amount to a few grams of salt. At least 30 salt phases are known but only 10 of these are widespread. These 10 are thenardite, gypsum, halite, calcite, darapskite, soda nitre, mirabilite, bloedite, epsomite and hexahydrite. The distribution of salts has been examined on two scales, local and regional. The local scale extends from individual deposits to areas of a few square kilometres. The regional scale covers McMurdo oasis, McMurdo Sound and Ross Island, though areas in McMurdo oasis, and particularly Taylor Valley receive most attention. Local distribution is controlled by salt migration and separation. Migration is induced by water and wind, with soil brines moving as thin liquid films, by capillarity and under the influence of gravity. Deflation and asymmetric salt accumulation provide evidence that wind is important. Separation of phases is a consequence of different physico-chemical properties of salts, and environmental conditions, including site aspect, ambient temperature and humidity. Eutectic temperature is a fundamental salt property but solubility is also important. Several salt deposits containing separated (fractionated) phases have been found in the region. Separation is achieved mainly by fractional dissolution and crystallization and the most evolved product of the general separation sequence is calcium chloride. The separation processes, together with salt migration, obscure the sources of the salts. Regional distribution of salts has been characterized by determining the relative frequency at which specific phases are encountered at increasing distance from the coast and above sea level. Chloride and sodium phases decrease, whereas magnesium phases increase in frequency away from the coast. Sulphates-to-chloride and nitrates-to-chloride ratios increase with increasing distance. Calcium and carbonate show little change except in Taylor Valley where a marked decrease is apparent. This regional distribution is mainly dependent on the sources of the salts. The marine source is most important, contributing almost all of the chloride, sodium, sulphate and probably nitrate ions that are present. Chemical weathering is the predominant source of magnesium, calcium and carbonate ions probably via reactions of mafic, ferromagnesian minerals in local rocks and regolith. Biological and volcanic activity are locally significant at eastern Taylor Valley and in the summit area of Erebus Volcano, respectively. The salts have accumulated over the lifetime of the region, that is over less than the last 20-25 Ma or so. There is no evidence that they are relics from earlier, preglacial times, except for very minor amounts of gypsum and calcium carbonate. There has been a recent influx of sea water into Taylor Valley perhaps between 50,000 and 20,000 years ago, and evaporation of this water has preceded advance of Taylor Glacier over part of the resulting salt deposit. The continuing interaction between glacier and salt is causing basal ice to melt and producing aperiodic discharges of up to a few thousand cubic metres of salty water from the terminus of the glacier.</p>


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Runze Tian ◽  
Yu Zhang ◽  
Anhua Xu ◽  
Xuemei Li ◽  
Yunlong Hou ◽  
...  

Secondary salinization is a common problem in saline soil projects. In order to grasp the mechanism of water and salt migration of high-chlorine saline soil during the cooling process, the saline soils along the Qarhan-Golmud Highway in the Qinghai-Tibet Plateau were selected as test samples. Firstly, the basic physical parameter test and the soluble salt chemical experiment were carried out and obtained liquid and plastic limits, dry density, etc. Secondly, freezing temperature experiments and water-salt migration experiments under one-way cooling conditions were conducted according to the actual environmental conditions, and after the temperature gradient line of the soil sample was stable, water content and labile salt chemistry experiments were conducted to obtain the distribution of water and salt contents of soil samples. Finally, the effect of crystallization-water phase transition on water and salt migration and the effect of chloride salt on the temperature of crystallization-water phase transition were considered, and a mathematical model applicable to the water and salt migration of highly chlorinated saline soils under the effect of unidirectional cooling was established and solved with COMSOL Multiphysics software, and the correctness of the model was verified by comparing the simulation results with the experimental results. The study found that (1) during the one-way cooling process, both water and salt showed a tendency to migrate to the cold end. The MC (saline soil with medium chlorine content) with an initial water content of 16.9% and Cl− content of 3.373% was measured to reach a 17.6% water content and 3.76% Cl− content at the cold (top) end after the experiment. The HC (saline soil with high chlorine content) with an initial water content of 6.6% and Cl− content of 17.928% was measured to reach a 6.83% water content and 18.8% Cl− content after the experiment and (2) after the one-way cooling experiment of the MC, the water content at a distance of 1–2 cm from the cold end has abrupt changes, which may be caused by a small amount of crystallization—water phase transition at this location. At the same time, according to the temperature change graph during the cooling process, the phase change temperature was set to −9°C in the numerical simulation process to match the experimental results.


Solid Earth ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 1443-1471
Author(s):  
Thomas Voigt ◽  
Jonas Kley ◽  
Silke Voigt

Abstract. Central and western Europe were affected by a compressional tectonic event in the Late Cretaceous, caused by the convergence of Iberia and Europe. Basement uplifts, inverted graben structures, and newly formed marginal troughs are the main expressions of crustal shortening. Although the maximum activity occurred during a short period of time between 90 and 75 Ma, the exact timing of this event is still unclear. Dating of the start and end of Late Cretaceous basin inversion gives very different results depending on the method applied. On the basis of borehole data, facies, and thickness maps, the timing of basin reorganization was reconstructed for several basins in central Europe. The obtained data point to a synchronous start of basin inversion at 95 Ma (Cenomanian), 5 Myr earlier than commonly assumed. The end of the Late Cretaceous compressional event is difficult to pinpoint in central Europe, because regional uplift and salt migration disturb the signal of shifting marginal troughs. Late Campanian to Paleogene strata deposited unconformably on inverted structures indicate slowly declining uplift rates during the latest Cretaceous. The differentiation of separate Paleogene inversion phases in central Europe does not appear possible at present.


Sign in / Sign up

Export Citation Format

Share Document