genetic interaction network
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Laibao Feng ◽  
Aimin Ma ◽  
Bo Song ◽  
Sibin Yu ◽  
Xiaoquan Qi

Abstract Dissecting the genetic mechanisms underlying agronomic traits is of great importance for crop breeding. Agronomic traits are usually controlled by multiple quantitative trait loci (QTLs) and genetic interactions, and mapping the underlying causal genes is still labor-intensive and time-consuming. Here, we present a genetic tool for directly targeting the specific causal genes by using a single-gene resolution linkage map that was constructed from 3756 F2 rice plants via targeted sequencing technology and Tukey-Kramer multiple comparisons test. Three large- and moderate-effect QTLs, qHD6-2, qGL3-1, and qGW5-2, were successfully mapped to their specific causal genes, Hd1, GS3, and GW5, respectively. A complex genetic interaction network containing 30 QTL–QTL interactions was constructed, revealing that the alternative allele of hub QTL, qHD6-2, can hide or release the genetic contributions of the alleles at interacting loci. Moreover, arranging genetic interactions in the models lead to more accurate phenotypic predictions. These results provide a community resource and new feasible strategy for deciphering the genetic mechanisms of complex agronomic traits and accelerating crop breeding.


Author(s):  
Ergi D Özsoy ◽  
Murat Yılmaz ◽  
Bahar Patlar ◽  
Güzin Emecen ◽  
Esra Durmaz ◽  
...  

Abstract Epistasis – gene-gene interaction – is common for mutations with large phenotypic effects in humans and model organisms. Epistasis impacts quantitative genetic models of speciation, response to natural and artificial selection, genetic mapping and personalized medicine. However, the existence and magnitude of epistasis between alleles with small quantitative phenotypic effects is controversial and difficult to assess. Here, we use the Drosophila melanogaster Genetic Reference Panel of sequenced inbred lines to evaluate the magnitude of naturally occurring epistasis modifying the effects of mutations in jing and inv, two transcription factors that have subtle quantitative effects on head morphology as homozygotes. We find significant epistasis for both mutations and performed single marker genome wide association analyses to map candidate modifier variants and loci affecting head morphology. A subset of these loci was significantly enriched for a known genetic interaction network, and mutations of the candidate epistatic modifier loci also affect head morphology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Joanna Klim ◽  
Urszula Zielenkiewicz ◽  
Marek Skoneczny ◽  
Adrianna Skoneczna ◽  
Anna Kurlandzka ◽  
...  

Abstract Background The impact of genetic interaction networks on evolution is a fundamental issue. Previous studies have demonstrated that the topology of the network is determined by the properties of the cellular machinery. Functionally related genes frequently interact with one another, and they establish modules, e.g., modules of protein complexes and biochemical pathways. In this study, we experimentally tested the hypothesis that compensatory evolutionary modifications, such as mutations and transcriptional changes, occur frequently in genes from perturbed modules of interacting genes. Results Using Saccharomyces cerevisiae haploid deletion mutants as a model, we investigated two modules lacking COG7 or NUP133, which are evolutionarily conserved genes with many interactions. We performed laboratory evolution experiments with these strains in two genetic backgrounds (with or without additional deletion of MSH2), subjecting them to continuous culture in a non-limiting minimal medium. Next, the evolved yeast populations were characterized through whole-genome sequencing and transcriptome analyses. No obvious compensatory changes resulting from inactivation of genes already included in modules were identified. The supposedly compensatory inactivation of genes in the evolved strains was only rarely observed to be in accordance with the established fitness effect of the genetic interaction network. In fact, a substantial majority of the gene inactivations were predicted to be neutral in the experimental conditions used to determine the interaction network. Similarly, transcriptome changes during continuous culture mostly signified adaptation to growth conditions rather than compensation of the absence of the COG7, NUP133 or MSH2 genes. However, we noticed that for genes whose inactivation was deleterious an upregulation of transcription was more common than downregulation. Conclusions Our findings demonstrate that the genetic interactions and the modular structure of the network described by others have very limited effects on the evolutionary trajectory following gene deletion of module elements in our experimental conditions and has no significant impact on short-term compensatory evolution. However, we observed likely compensatory evolution in functionally related (albeit non-interacting) genes.


2021 ◽  
Author(s):  
Ryan C. Vignogna ◽  
Sean W. Buskirk ◽  
Gregory I. Lang

ABSTRACTUnderstanding how genes interact is a central challenge in biology. Experimental evolution provides a useful, but underutilized, tool for identifying genetic interactions, particularly those that involve non-loss-of-function mutations or mutations in essential genes. We previously identified a strong positive genetic interaction between specific mutations in KEL1 (P344T) and HSL7 (A695fs) that arose in an experimentally-evolved Saccharomyces cerevisiae population. Because this genetic interaction is not phenocopied by gene deletion, it was previously unknown. Using “evolutionary replay” experiments we identified additional mutations that have positive genetic interactions with the kel1-P344T mutation. We replayed the evolution of this population 672 times from six timepoints. We identified 30 populations where the kel1-P344T mutation reached high frequency. We performed whole-genome sequencing on these populations to identify genes in which mutations arose specifically in the kel1-P344T background. We reconstructed mutations in the ancestral and kel1-P344T backgrounds to validate positive genetic interactions. We identify several genetic interactors with KEL1, we validate these interactions by reconstruction experiments, and we show these interactions are not recapitulated by loss-of-function mutations. Our results demonstrate the power of experimental evolution to identify genetic interactions that are positive, allele specific, and not readily detected by other methods, and sheds light on a previously under-explored region of the yeast genetic interaction network.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yong Lin ◽  
Xiaoke Ma

Long intergenic non-coding ribonucleic acids (lincRNAs) are critical regulators for many complex diseases, and identification of disease-lincRNA association is both costly and time-consuming. Therefore, it is necessary to design computational approaches to predict the disease-lincRNA associations that shed light on the mechanisms of diseases. In this study, we develop a co-regularized non-negative matrix factorization (aka Cr-NMF) to identify potential disease-lincRNA associations by integrating the gene expression of lincRNAs, genetic interaction network for mRNA genes, gene-lincRNA associations, and disease-gene associations. The Cr-NMF algorithm factorizes the disease-lincRNA associations, while the other associations/interactions are integrated using regularization. Furthermore, the regularization does not only preserve the topological structure of the lincRNA co-expression network, but also maintains the links “lincRNA → gene → disease.” Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art methods in terms of accuracy on predicting the disease-lincRNA associations. The model and algorithm provide an effective way to explore disease-lncRNA associations.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Jason M. Peters

ABSTRACT Jason M. Peters works in the fields of antibiotic resistance and biofuel production. In this mSphere of Influence article, he reflects on how the paper “A global genetic interaction network maps a wiring diagram of cellular function” by Costanzo et al. (Science 353:aaf1420, 2016, https://doi.org/10.1126/science.aaf1420) has impacted his work by highlighting the power of gene networks to uncover new biology.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Mohan Timilsina ◽  
Haixuan Yang ◽  
Ratnesh Sahay ◽  
Dietrich Rebholz-Schuhmann

Abstract Background Determining the association between tumor sample and the gene is demanding because it requires a high cost for conducting genetic experiments. Thus, the discovered association between tumor sample and gene further requires clinical verification and validation. This entire mechanism is time-consuming and expensive. Due to this issue, predicting the association between tumor samples and genes remain a challenge in biomedicine. Results Here we present, a computational model based on a heat diffusion algorithm which can predict the association between tumor samples and genes. We proposed a 2-layered graph. In the first layer, we constructed a graph of tumor samples and genes where these two types of nodes are connected by “hasGene” relationship. In the second layer, the gene nodes are connected by “interaction” relationship. We applied the heat diffusion algorithms in nine different variants of genetic interaction networks extracted from STRING and BioGRID database. The heat diffusion algorithm predicted the links between tumor samples and genes with mean AUC-ROC score of 0.84. This score is obtained by using weighted genetic interactions of fusion or co-occurrence channels from the STRING database. For the unweighted genetic interaction from the BioGRID database, the algorithms predict the links with an AUC-ROC score of 0.74. Conclusions We demonstrate that the gene-gene interaction scores could improve the predictive power of the heat diffusion model to predict the links between tumor samples and genes. We showed the efficient runtime of the heat diffusion algorithm in various genetic interaction network. We statistically validated our prediction quality of the links between tumor samples and genes.


Sign in / Sign up

Export Citation Format

Share Document