scholarly journals Evaluation of cellular response and drug delivery efficacy of nanoporous stainless steel material

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Inho Bae ◽  
Kyung-Seob Lim ◽  
Jun-Kyu Park ◽  
Ju Han Song ◽  
Sin-Hye Oh ◽  
...  

Abstract Objective Various surface modification techniques that can further improve the function and usability of stainless steel as a medical device have been reported. In the present study, the physical and biological properties of nanoporous stainless steel as well as its usefulness for drug delivery were assessed. Methods The specimen was prepared with a circular disk shape (15 mm in diameter and 1 mm in thickness). The disk was subjected to electropolishing at a constant voltage of 20 V and 10 A for 10 min in an acidic environment (50% H2SO4). Everolimus (EVL) was used as a testing drug for drug-loading capacity of the material surface and release kinetics. The physiobiological properties of the material were assessed using platelet adhesion, and smooth muscle cell (SMC) adhesion, migration, and proliferation assays. Results The surface roughness of the postpolishing group was greater than that of the nonpolishing group. Platelet adhesion and SMC adhesion and migration were inhibited in the postpolishing group compared to those in the prepolishing group. In the postpolishing group, the total amount of EVL on the surface (i.e., drug storage rate) was higher and the drug release rate was lower, with half the amount of the EVL released within 4 days compared with only 1 day for that of the prepolishing group. Conclusion Taken together, this stainless steel with a nanoporous surface could be used as a medical device for controlling cellular responses and carrying drugs.

Author(s):  
Aiswarya Anilkumar Ajitha ◽  
Sri SivaKumar ◽  
Gayathri Viswanathan ◽  
Sabulal Baby ◽  
Prabath Gopalakrishnan Biju

Background: Over the last few decades, there has been a stupendous change in the area of drug delivery using particulate delivery systems, with increasing focus on nanoparticles in recent times. Nanoparticles helps to improve and alter the pharmacodynamic properties and pharmacokinetics of various types of drug molecules. These features help to protect the drug entity in the systemic circulation, access of the drug to the chosen sites, and to deliver the drug in a controlled and sustained rate at the site of action. Objective: Nanoparticle based targeted delivery of anti-inflammatory drugs/signal modulatory agents to the cytoplasm or nuclei of the targeted cell can significantly enhance the precision and efficacy of intended therapeutic activity. To this end, we report ligand free, enhanced intra-nuclear delivery model of anti-inflammatory therapeutics via PDMS nanoparticles. Method: PDMS nanoparticles were prepared by sacrificial silica template-based approach and details of their characterization for suitability as a nanoparticle-based delivery material is detailed herein. Results: Biological evaluation for compatibility was carried out and the results showed that the PDMS nanoparticle has no toxicity on RAW 264.7 cells in the concentration range of 10, 20, 40, 60, 80, 100 and 120 μg/mL in culture. Biocompatibility and absence of toxicity was determined by morphological examination and cell viability assays. Drug loading and release kinetics were carried out with the anti-inflammatory drug Diclofenac. Conclusion: In this paper we clearly demonstrate the various aspects of nanoparticle articulation, characterization, effect of their characteristics and their applications as a non-toxic drug delivery molecule for its potential applications in therapeutic delivery of drugs for sustained release.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Monica Terracciano ◽  
Luca De Stefano ◽  
Ilaria Rea

Diatom microalgae are the most outstanding natural source of porous silica. The diatom cell is enclosed in a three-dimensional (3-D) ordered nanopatterned silica cell wall, called frustule. The unique properties of the diatom frustule, including high specific surface area, thermal stability, biocompatibility, and tailorable surface chemistry, make diatoms really promising for biomedical applications. Moreover, they are easy to cultivate in an artificial environment and there is a large availability of diatom frustules as fossil material (diatomite) in several areas of the world. For all these reasons, diatoms are an intriguing alternative to synthetic materials for the development of low-cost drug delivery systems. This review article focuses on the possible use of diatom-derived silica as drug carrier systems. The functionalization strategies of diatom micro/nanoparticles for improving their biophysical properties, such as cellular internalization and drug loading/release kinetics, are described. In addition, the realization of hybrid diatom-based devices with advanced properties for theranostics and targeted or augmented drug delivery applications is also discussed.


Author(s):  
Sanjoy Das ◽  
Malay K. Das

Objective: Site-specific drug delivery into the colonic region is extremely fascinating for local treatment of various colonic diseases like ulcerative colitis, colon cancer but it should be capable of saving the drug from hydrolysis and degradation. The present study reports the application of jackfruit seed starch and its thiol derivative as a drug delivery carrier for the colon. Methods: The starch was extracted from the jackfruit seeds by water extraction method and modified by the esterification reaction with thioglycolic acid. The thiolated starch was characterized for morphology, functional and flow properties. The safety profile of the thiolated starch was confirmed by acute toxicity study in a mice model as per OECD guidelines 423. The microspheres based on thiolated starch were prepared by ionic gelation method incorporating Ibuprofen as a model drug. The prepared microspheres were characterized for particle size, drug entrapment efficiency, drug loading, compatibility study, surface morphology, in vitro drug release and release kinetics. Results: The result attributed that starch was successfully modified by the thiolation with a degree of substitution of 3.30. The size of prepared microspheres ranges from 825.5±4.58 to 857±6.24 µm, the entrapment efficiencies ranges from 69.23±1.19 to 76.15±0.83 % and the drug loading capacity ranges from 17.75±0.30 to 46.05±0.49 %. The FT-IR, DSC and XRD studies confirmed that there is no interaction within drug and excipients. The thiolated starch microspheres show the maximum release of drug at pH 7.4 in the presence of rat caecal content as compared to pH 1.2 and pH 6.8 for up to 24 h and are following first order release kinetics. Conclusion: These results suggest the application of thiolated jackfruit seed starch could be promising as a long-term drug delivery carrier for the colon.


2017 ◽  
pp. 459-485
Author(s):  
Prabhakar Singh ◽  
Sudhakar Singh ◽  
Rajesh Kumar Kesharwani

In this pharma innovative world, there are more than 30 drug delivery systems. Today's due to lacking the target specificity, the present scenario about drug delivery is emphasizing towards targeted drug delivery systems. Erythrocytes are the most common type of blood cells travel thousands of miles from wide to narrow pathways to deliver oxygen, drugs and nutrient during their lifetime. Red blood cells have strong and targeted potential carrier capabilities for varieties of drugs. Drug-loaded carrier erythrocytes or resealed erythrocytes are promising for various passive and active targeting. Resealed erythrocyte have advantage over several drug carrier models like biocompatibility, biodegradability without toxic products, inert intracellular environment, entrapping potential for a variety of chemicals, protection of the organism against toxic effects of the drug, able to circulate throughout the body, ideal zero-order drug-release kinetics, no undesired immune response against encapsulated drug etc. Resealed erythrocytes are rapidly taken up by macrophages of the Reticuloendothelial System (RES) of the liver, lung, and spleen of the body and hence drugs also. Resealed erythrocytes method of drugs delivery is secure and effective for drugs targeting specially for a longer period of time. This chapter will explain the different method of drug loading for resealed erythrocytes, their characterization, and applications in various therapies and associated health benefits.


2021 ◽  
Author(s):  
Boxun Liu ◽  
Zhizhong Jin ◽  
Haiyan Chen ◽  
Lun Liang ◽  
Yao Li ◽  
...  

Abstract Electrospun membranes are attracting interest as a drug delivery system because of their material composition flexibility and versatile drug loading. In this study, the electrospun membrane was loaded with doxorubicin (DOX) via electrostatic adsorption for long-term drug delivery. DOX loading process was optimized by varying temperature, time, drug concentration, pH, and ionic strength of solutions. The loading process did not impair the structural properties of the membrane. Next, we investigated the drug release kinetics using spectroscopic techniques. The composite membranes released 22% of the adsorbed DOX over the first 48 h, followed by a slower and sustained release over 4 weeks. The DOX release was sensitive to acidic solutions that the release rate at pH 6.0 was 1.27 times as that at pH 7.4. The DOX-loaded membranes were found to be cytotoxic to U-87 MG cells in vitro that decreased the cell viability from 82.92% to 25.49% from 24 h to 72 h of co-incubation. These membranes showed strong efficacy in suppressing tumour growth in vivo in glioblastoma-bearing mice that decreased the tumour volume by 77.33% compared to blank membrane-treated group on Day 20. In conclusion, we have developed an effective approach to load DOX within a clinically-approved poly (L-lactic acid)/gelatin membrane for local and long-term delivery of DOX for the treatment of glioblastoma.


2019 ◽  
Vol 19 (4) ◽  
pp. 285-295 ◽  
Author(s):  
Xiaohui Pu ◽  
Jia Li ◽  
Peng Qiao ◽  
Mengmeng Li ◽  
Haiyan Wang ◽  
...  

Background: With the development of nanotechnology, nanocarrier has widely been applied in such fields as drug delivery, diagnostic and medical imaging and engineering in recent years. Among all of the available nanocarriers, mesoporous silica nanoparticles (MSNs) have become a hot issue because of their unique properties, such as large surface area and voidage, tunable drug loading capacity and release kinetics, good biosafety and easily modified surface. Objective: We described the most recent progress in silica-assisted drug delivery and biomedical applications according to different types of Cargo in order to allow researchers to quickly learn about the advance in this field. Methods: Information has been collected from the recently published literature available mainly through Title or Abstract search in SpringerLink and PubMed database. Special emphasis is on the literature available during 2008-2017. Results: In this review, the major research advances of MSNs on the drug delivery and biomedical applications were summarized. The significant advantages of MSNs have also been listed. It was found that the several significant challenges need to be addressed and investigated to further advance the applications of these structurally defined nanomaterials. Conclusion: Through approaching this review, the researchers can be aware of many new synthetic methods, smart designs proposed in the recent year and remaining questions of MSNs at present.


2020 ◽  
Vol 10 (4) ◽  
pp. 518-533 ◽  
Author(s):  
Kehinde M. Ibiyeye ◽  
Abu B.Z. Zuki ◽  
Norshariza Nurdin ◽  
Mokrish Ajat

Background: Cockleshell-derived aragonite calcium carbonate nanoparticles were prepared by the top-down approach for combine delivery of two types of drugs. Objective: The aim of this study was to synthesize and characterize thymoquinone-doxorubicin loaded cockle shell-derived aragonite calcium carbonate nanoparticle. Aragonite calcium carbonate nanoparticles encapsulating thymoquinone and doxorubicin alone were also prepared. Methods: The blank and drug-loaded nanoparticles were characterized by field emission scanning electron microscopy, transmission electron microscopy, Zeta potential, Fourier transformed infrared and X-ray diffraction. Drug delivery properties, in vitro drug release study at pH 7.4, 6 and 4.8, and effect of blank nanoparticles on MCF10A, 3T3, MDA MB231 cells were also analyzed. Results: The blank and drug-loaded nanoparticles were pleomorphic and their sizes varying from 53.65 ± 10.29 nm to 60.49 ± 11.36 nm with an overall negative charge. The entrapment efficiency of thymoquinone and doxorubicin were 41.6 and 95.8, respectively. The FTIR showed little alteration after loading thymoquinone and doxorubicin while XRD patterns revealed no changes in the crystallizations of nanoparticles after drug loading. The drug release kinetics of doxorubicin and thymoquinone from the nanoparticles showed a continuous and gradual release after an initial burst release was observed. At pH 4.8, about 100% of drug release was noticed, 70% at pH 6 while only 50% at pH 7.4. The cell viability was 80% at a concentration of 1000 ug/ml of blank nanoparticle. Conclusion: The cockle shell-derived pH sensitive aragonite calcium carbonate nanoparticle provides an effective and simple means of multiple drug delivery and function as a platform for pH controlled release of loaded therapeutic agents.


Author(s):  
Prabhakar Singh ◽  
Sudhakar Singh ◽  
Rajesh Kumar Kesharwani

In this pharma innovative world, there are more than 30 drug delivery systems. Today's due to lacking the target specificity, the present scenario about drug delivery is emphasizing towards targeted drug delivery systems. Erythrocytes are the most common type of blood cells travel thousands of miles from wide to narrow pathways to deliver oxygen, drugs and nutrient during their lifetime. Red blood cells have strong and targeted potential carrier capabilities for varieties of drugs. Drug-loaded carrier erythrocytes or resealed erythrocytes are promising for various passive and active targeting. Resealed erythrocyte have advantage over several drug carrier models like biocompatibility, biodegradability without toxic products, inert intracellular environment, entrapping potential for a variety of chemicals, protection of the organism against toxic effects of the drug, able to circulate throughout the body, ideal zero-order drug-release kinetics, no undesired immune response against encapsulated drug etc. Resealed erythrocytes are rapidly taken up by macrophages of the Reticuloendothelial System (RES) of the liver, lung, and spleen of the body and hence drugs also. Resealed erythrocytes method of drugs delivery is secure and effective for drugs targeting specially for a longer period of time. This chapter will explain the different method of drug loading for resealed erythrocytes, their characterization, and applications in various therapies and associated health benefits.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4946
Author(s):  
Anna Florczak ◽  
Inga Grzechowiak ◽  
Tomasz Deptuch ◽  
Kamil Kucharczyk ◽  
Alicja Kaminska ◽  
...  

Although progress is observed in cancer treatment, this disease continues to be the second leading cause of death worldwide. The current understanding of cancer indicates that treating cancer should not be limited to killing cancer cells alone, but that the target is the complex tumor microenvironment (TME). The application of nanoparticle-based drug delivery systems (DDS) can not only target cancer cells and TME, but also simultaneously resolve the severe side effects of various cancer treatment approaches, leading to more effective, precise, and less invasive therapy. Nanoparticles based on proteins derived from silkworms’ cocoons (like silk fibroin and sericins) and silk proteins from spiders (spidroins) are intensively explored not only in the oncology field. This natural-derived material offer biocompatibility, biodegradability, and simplicity of preparation methods. The protein-based material can be tailored for size, stability, drug loading/release kinetics, and functionalized with targeting ligands. This review summarizes the current status of drug delivery systems’ development based on proteins derived from silk fibroin, sericins, and spidroins, which application is focused on systemic cancer treatment. The nanoparticles that deliver chemotherapeutics, nucleic acid-based therapeutics, natural-derived agents, therapeutic proteins or peptides, inorganic compounds, as well as photosensitive molecules, are introduced.


2012 ◽  
Vol 584 ◽  
pp. 465-469 ◽  
Author(s):  
S. Malathi ◽  
S. Balasubramanian

Nanoparticles-based drug delivery systems have considerable potential for the treatment of tuberculosis (TB). A series of PLGA polymers with different molar feed ratios (P2:87/13, P3:83/17, P5:63/37, P6:76/24, P9:53/47) were synthesized by direct melt poly condensation method. The resulting biodegradable polymers were characterized by FTIR and 1H NMR spectroscopy. The preparation of the drug (Pyrazinamide (PZA)) encapsulated PLGA polymers were carried out by double emulsion – solvent evaporation technique. The drug loaded PLGA-NPs were analyzed by UV-visible spectroscopy and scanning electron microscopy. The drug loading efficiency and drug release kinetics varies in the following order: P9>P5>P6>P3>P2. Among the formulations, PP9 showed a uniform as well as sustained drug release. The drug release kinetics has been evaluated by Zero-order, First order, Higuchi and Koresmeyer- Peppas models and the release mechanism has also been investigated


Sign in / Sign up

Export Citation Format

Share Document