ph shock
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 5 ◽  
Author(s):  
Juan Castilla-Archilla ◽  
Jonas Heiberger ◽  
Simon Mills ◽  
Julia Hilbig ◽  
Gavin Collins ◽  
...  

The production of volatile fatty acids (VFAs) in expanded granular sludge bed (EGSB) reactors using leachate from thermal diluted acid hydrolysis of brewery spent grain was evaluated. Partial inhibition of the anaerobic digestion process to induce VFA accumulation was achieved by applying a high organic loading rate [from 15.3 to 46.0 gCOD/(L·day)], and using a feed with an inlet concentration of 15 g/L total carbohydrates. Two EGSB reactors were operated under identical conditions, both inoculated with the same granular sludge. However, granular sludge in one reactor (R1) was subsequently disaggregated to flocculent sludge by a pH shock, whereas granules remained intact in the other reactor (R2). The hydraulic retention time (HRT) of both reactors was decreased from 36 to 24, 18 and 12 h. The main fermented compounds were acetic acid, butyric acid, propionic acid and ethanol. Despite fluctuations between these products, their total concentration was quite stable throughout the trial at about 134.2 (±27.8) and 141.1 (±21.7) mmol/L, respectively, for R1 and R2. Methane was detected at the beginning of the trial, and following some periods of instability in the granular sludge reactor (R2). The hydrogen yield increased as the HRT decreased. The highest VFA production was achieved in the granular sludge reactor at a 24 h HRT, corresponding to 120.4 (±15.0) mmol/L of VFAs. This corresponded to an acidification level of 83.4 (±5.9) g COD of VFA per 100 gram of soluble COD.


2020 ◽  
Vol 314 ◽  
pp. 123725 ◽  
Author(s):  
Sang-Il Han ◽  
Sun Hyoung Chang ◽  
Changsu Lee ◽  
Min Seo Jeon ◽  
Young Mok Heo ◽  
...  

2020 ◽  
Vol 35 (3) ◽  
pp. 457-463
Author(s):  
Huixia Lan ◽  
Xiangzhi Wang ◽  
Shixin Qi ◽  
Da Yang ◽  
Hao Zhang

AbstractUsing the acclimated activated sludge from the pulping middle-stage effluent, the effect of pH shock on the micro-oxygen activated sludge system with a nano-magnetic powder/graphene oxide composite was studied. The results showed that the removal rates of chemical oxygen demand (CODCr) and ultraviolet adsorption at 254 nm (UV254) decreased. Also, the sludge settling performance was poor due to the impact of pH, but the impact resistance of nano-magnetic powder/graphene oxide group (MGO group) was higher and the recovery was faster. Results of high throughput sequencing indicated that the diversity of microbial community was reduced by the impact of pH, but it was significantly higher in MGO group than in the blank group. The dominant bacteria after pH shock or recovery in both of the system had a large difference. The percentage of the dominant bacteria in the MGO group was higher than that in the blank group. The MGO group had higher electron transfer system (ETS) activity which made the system having a strong pH impact resistance.


2019 ◽  
Vol 43 (3) ◽  
pp. 361-372
Author(s):  
Long Pan ◽  
Xu-Sheng Chen ◽  
Kai-Fang Wang ◽  
Zhong-Gui Mao

Sign in / Sign up

Export Citation Format

Share Document