substrate feeding
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 10)

H-INDEX

20
(FIVE YEARS 1)

Palaios ◽  
2021 ◽  
Vol 36 (9) ◽  
pp. 283-300
Author(s):  
WILLIAM J. FREIMUTH ◽  
DAVID J. VARRICCHIO ◽  
KAREN CHIN

ABSTRACT The terrestrial feeding trace Edaphichnium lumbricatum is known from the Triassic to the Pleistocene and is characterized by tubular burrows with ellipsoidal fecal pellets, indicating substrate feeding by earthworms or other invertebrates. We describe 11 specimens attributable to Edaphichnium isp. from Egg Mountain, a terrestrial locality with a diverse fossil assemblage from the Upper Cretaceous Two Medicine Formation in Montana, USA, and assess their paleoenvironmental and paleoecological implications. These ichnofossils were recovered from a 1.5 meter stratigraphic succession comprised of calcareous siltstones and limestones with abundant fossil insect pupal cases, representing well-drained paleosols. Although burrows are not always present, three recurring arrangements of Edaphichnium isp. fecal pellets are identified: linearly arranged pellets, horizon-confined pellets, and pellets in clusters dispersed vertically and horizontally throughout the matrix. Two color patterns (light and dark pellets) are also distinguished. Pellets are fine-grained and have a consistently ellipsoidal shape (length:diameter of 1.57), with maximum lengths ranging from 1.9–6.7 mm (mean 4.1 mm) and maximum diameters ranging from 1.0–4.1 mm (mean 2.6 mm). Geochemical analyses indicate pellets are comprised of varying proportions of calcite, plagioclase, and quartz, and are enriched in phosphorus relative to the sedimentary host matrix. Possible trace makers include chafer or other coleopteran larvae, millipedes, and earthworms, suggesting a range of capable trace makers of Edaphichnium-like fecal pellets. Edaphichnium isp. at specific stratigraphic horizons suggests increased organic content in the subsurface, potentially connected to depositional hiatuses. Edaphichnium isp. adds a secondary component to the Celliforma ichnofacies known from Egg Mountain and surrounding strata, and to the array of nesting, feeding, and dwelling traces of wasps, beetles, other invertebrates, mammals, and dinosaurs from the locality.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 535
Author(s):  
Nurul Haziqah Alias ◽  
Suraini Abd-Aziz ◽  
Lai Yee Phang ◽  
Mohamad Faizal Ibrahim

Sago hampas composed of a high percentage of polysaccharides (starch, cellulose and hemicellulose) that make it a suitable substrate for fermentation. However, the saccharification of sago hampas through the batch process is always hampered by its low sugar concentration due to the limitation of the substrate that can be loaded into the system. Increased substrate concentration in the system reduces the ability of enzyme action toward the substrate due to substrate saturation, which increases viscosity and causes inefficient mixing. Therefore, sequential-substrate feeding has been attempted in this study to increase the amount of substrate in the system by feeding the substrate at the selected intervals. At the same time, sequential-enzymes loading has been also evaluated to maximize the amount of enzymes loaded into the system. Results showed that this saccharification with sequential-substrate feeding and sequential-enzymes loading has elevated the solid loading up to 20% (w/v) and reduced the amount of enzymes used per substrate input by 20% for amylase and 50% for cellulase. The strategies implemented have enhanced the fermentable sugar production from 80.33 g/L in the batch system to 119.90 g/L in this current process. It can be concluded that sequential-substrate feeding and sequential-enzymes loading are capable of increasing the total amount of substrate, the amount of fermentable sugar produced, and at the same time maximize the amount of enzymes used in the system. Hence, it would be a promising solution for both the economic and waste management of the sago hampas industry to produce value-added products via biotechnological means.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Alberto Millán ◽  
Núria Sala ◽  
Mercè Torres ◽  
Ramon Canela-Garayoa

The compound 2,5-di(hydroxymethyl)furan (DHMF) is a high-value chemical block that can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated, and F. striatum was selected to produce DHMF. The effects of the inoculum size, glucose concentration and pH of the media over DHMF production were evaluated by a 23 factorial design. A substrate feeding approach was found suitable to overcome the toxicity effect of HMF towards the cells when added at high concentrations (>75 mM). The process was successfully scaled-up at bioreactor scale (1.3 L working volume) with excellent DHMF production yields (95%) and selectivity (98%). DHMF was purified from the reaction media with high recovery and purity by organic solvent extraction with ethyl acetate.


Author(s):  
Alberto Millán ◽  
Núria Sala ◽  
Mercè Torres ◽  
Ramon Canela-Garayoa

2,5-Di(hydroxymethyl)furan (DHMF) is a high-value chemical block than can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated and F. striatum was selected to produce DHMF. The effects of the inoculum size, glucose concentration and pH of the media over DHMF production were evalu-ated by a 23 factorial design. A substrate feeding approach was found suitable to overcome the toxicity effect of HMF towards the cells when added at high concentrations (>75 mM). The pro-cess was successfully scaled-up at bioreactor scale (1.3 L) with excellent DHMF production yields (95%) and selectivities (98%). DHMF was purified from the reaction media with high recovery and purity by organic solvent extraction with ethyl acetate.


2020 ◽  
Vol 12 (4) ◽  
pp. 359-363
Author(s):  
G. F. Mironova ◽  
E. A. Skiba

2020 ◽  
Vol 12 (15) ◽  
pp. 6109 ◽  
Author(s):  
Anita Rywińska ◽  
Ludwika Tomaszewska-Hetman ◽  
Magdalena Rakicka-Pustułka ◽  
Piotr Juszczyk ◽  
Waldemar Rymowicz

The microbiological biosynthesis of α-ketoglutaric acid (KGA) has recently captured the attention of many scientists as an alternative to its common chemical synthesis. The present study aimed to evaluate the effect of the feeding strategy of substrates, i.e., glycerol (G = 20 g·dm−3) and rapeseed oil (O = 20 g·dm−3), on yeast growth and the parameters of KGA biosynthesis by a wild strain Yarrowia lipolytica A-8 in fed-batch and repeated-batch cultures. The effectiveness of KGA biosynthesis was demonstrated to depend on thiamine concentration and the substrate feeding method. In the fed-batch culture incubated with 3 µg·dm−3 of thiamine and a substrate feeding variant 2G(_OGO), KGA was produced in the amount of 62.1 g·dm−3 at the volumetric production rate of 0.37 g·dm−3·h−1. These values of KGA production parameters were higher than these obtained in the control culture (with rapeseed oil only). During 10 cycles of the 1788-h repeated-batch culture carried out acc. to the feeding strategy 2G(_OGO), in the last 5 cycles the yeast produced from 55.6 to 58.2 g·dm−3 of KGA and maximally 2.9 g·dm−3 of the pyruvic acid as a by-product.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Renaldas Urniezius ◽  
Arnas Survyla ◽  
Dziugas Paulauskas ◽  
Vladas Algirdas Bumelis ◽  
Vytautas Galvanauskas

Abstract Background The focus of this study is online estimation of biomass concentration in fed-batch cultures. It describes a bioengineering software solution, which is explored for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures. The experimental investigation of both cultures presents experimental validation results since the start of the bioprocess, i.e. since the injection of inoculant solution into bioreactor. In total, four strains were analyzed, and 21 experiments were performed under varying bioprocess conditions, out of which 7 experiments were carried out with dosed substrate feeding. Development of the microorganisms’ culture invariant generic estimator of biomass concentration was the main goal of this research. Results The results show that stoichiometric parameters provide acceptable knowledge on the state of biomass concentrations during the whole cultivation process, including the exponential growth phase of both E. coli and S. cerevisiae cultures. The cell culture stoichiometric parameters are estimated by a procedure based on the Luedeking/Piret-model and maximization of entropy. The main input signal of the approach is cumulative oxygen uptake rate at fed-batch cultivation processes. The developed noninvasive biomass estimation procedure was intentionally made to not depend on the selection of corresponding bioprocess/bioreactor parameters. Conclusions The precision errors, since the bioprocess start, when inoculant was injected to a bioreactor, confirmed that the approach is relevant for online biomass state estimation. This included the lag and exponential growth phases for both E. coli and S. cerevisiae. The suggested estimation procedure is identical for both cultures. This approach improves the precision achieved by other authors without compromising the simplicity of the implementation. Moreover, the suggested approach is a candidate method to be the microorganisms’ culture invariant approach. It does not depend on any numeric initial optimization conditions, it does not require any of bioreactor parameters. No numeric stability issues of convergence occurred during multiple performance tests. All this makes this approach a potential candidate for industrial tasks with adaptive feeding control or automatic inoculations when substrate feeding profile and bioreactor parameters are not provided.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Thiago José Barbosa Mesquita ◽  
Cíntia Regina Sargo ◽  
José Roberto Fuzer ◽  
Sheyla Alexandra Hidalgo Paredes ◽  
Roberto de Campos Giordano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document