scholarly journals A Study on the Mechanisms Accounting for the Generation of a Southwest Vortex That Caused a Series of Severe Disasters during the 2020 Abnormal Meiyu Season

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 556
Author(s):  
Hui Ma ◽  
Xiaolei Ma ◽  
Yanwei Jing ◽  
Guiping Wu

The abnormal 2020 Meiyu season caused the worst disasters over the Yangtze River Valley in recent decades. Of these, the Sichuan Basin (SCB) and its surrounding regions were one of the most severely affected areas. Disastrous weather frequently occurs in these regions, with a large proportion of it closely related to the southwest vortices (SWVs). In order to further the understanding of SWV generation, this study investigated the formation mechanisms of a quasi-stationary SWV (by using two sets of vorticity budgets), which caused torrential rainfall (resulting in flash floods in Sichuan and Chongqing), lightning activities (causing tripping incidents of transmission lines in Sichuan) and strong winds (leading to shutting down of wind turbines in Hubei). Results showed that the SWV was generated in a favorable background environment, during which an upper-tropospheric divergence and a middle-tropospheric warm advection appeared over the SCB. Trajectory analyses and vorticity budget showed that the air particles that came from the lower troposphere of the regions south of the Tibetan Plateau dominated the SWV formation. These air particles experienced notable ascending during which an increase in their cyclonic vorticity occurred mainly due to convergence-related stretching, whereas, tilting mainly decelerated this increase. The air particles sourced from the areas within the key region of the SWV and areas northeast of the key region were the second dominant factor for the vortex formation. Overall, for the air particles that formed the SWV, their most rapid changes of vorticity and divergence appeared in the period 24 h before SWV formation, implying that this was the critical period for the SWV generation.

2013 ◽  
Vol 733 ◽  
pp. 370-393 ◽  
Author(s):  
Timothy N. Jukes ◽  
Kwing-So Choi

AbstractThe streamwise vortices generated by dielectric-barrier-discharge plasma actuators in the laminar boundary layer were investigated using particle image velocimetry to understand the vortex-formation mechanisms. The plasma vortex generator was oriented along the primary flow direction to produce a body force in the spanwise direction. This created a spanwise-directed wall jet which interacted with the oncoming boundary layer to form a coherent streamwise vortex. It was found that the streamwise vortices were formed by the twisting and folding of the spanwise vorticity in the oncoming boundary layer into the outer shear layer of the spanwise wall jet, which added its own vorticity to increase the circulation along the actuator length. This is similar to the delta-shaped, vane-type vortex generator, except that the circulation was enhanced by the addition of the vorticity in the plasma jet. It was also observed that the plasma vortex was formed close to the wall with an enhanced wall-ward entrainment, which created strong downwash above the actuator.


2007 ◽  
Vol 8 (4) ◽  
pp. 770-789 ◽  
Author(s):  
Guoxiong Wu ◽  
Yimin Liu ◽  
Qiong Zhang ◽  
Anmin Duan ◽  
Tongmei Wang ◽  
...  

Abstract This paper attempts to provide some new understanding of the mechanical as well as thermal effects of the Tibetan Plateau (TP) on the circulation and climate in Asia through diagnosis and numerical experiments. The air column over the TP descends in winter and ascends in summer and regulates the surface Asian monsoon flow. Sensible heating on the sloping lateral surfaces appears from the authors’ experiments to be the major driving source. The retarding and deflecting effects of the TP in winter generate an asymmetric dipole zonal-deviation circulation, with a large anticyclone gyre to the north and a cyclonic gyre to the south. Such a dipole deviation circulation enhances the cold outbreaks from the north over East Asia, results in a dry climate in south Asia and a moist climate over the Indochina peninsula and south China, and forms the persistent rainfall in early spring (PRES) in south China. In summer the TP heating generates a cyclonic spiral zonal-deviation circulation in the lower troposphere, which converges toward and rises over the TP. It is shown that because the TP is located east of the Eurasian continent, in summertime the meridional winds and vertical motions forced by the Eurasian continental-scale heating and the TP local heating are in phase over the eastern and central parts of the continent. The monsoon in East Asia and the dry climate in middle Asia are therefore intensified.


2020 ◽  
Vol 20 (11) ◽  
pp. 6973-6990 ◽  
Author(s):  
Jianzhong Ma ◽  
Steffen Dörner ◽  
Sebastian Donner ◽  
Junli Jin ◽  
Siyang Cheng ◽  
...  

Abstract. Mt. Waliguan Observatory (WLG) is a World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) global baseline station in China. WLG is located at the northeastern part of the Tibetan Plateau (36∘17′ N, 100∘54′ E, 3816 m a.s.l.) and is representative of the pristine atmosphere over the Eurasian continent. We made long-term ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at WLG during the period 2012–2015. In this study, we retrieve the differential slant column densities (dSCDs) and estimate the tropospheric background mixing ratios of different trace gases, including NO2, SO2, HCHO, and BrO, using the measured spectra at WLG. Averaging of 10 original spectra is found to be an “optimum option” for reducing both the statistical error of the spectral retrieval and systematic errors in the analysis. The dSCDs of NO2, SO2, HCHO, and BrO under clear-sky and low-aerosol-load conditions are extracted from measured spectra at different elevation angles at WLG. By performing radiative transfer simulations with the model TRACY-2, we establish approximate relationships between the trace gas dSCDs at 1∘ elevation angle and the corresponding average tropospheric background volume mixing ratios. Mixing ratios of these trace gases in the lower troposphere over WLG are estimated to be in a range of about 7 ppt (January) to 100 ppt (May) for NO2, below 0.5 ppb for SO2, between 0.4 and 0.9 ppb for HCHO, and lower than 0.3 ppt for BrO. The chemical box model simulations constrained by the NO2 concentration from our MAX-DOAS measurements show that there is a little net ozone loss (−0.8 ppb d−1) for the free-tropospheric conditions and a little net ozone production (0.3 ppb d−1) for the boundary layer conditions over WLG during summertime. Our study provides valuable information and data sets for further investigating tropospheric chemistry in the background atmosphere and its links to anthropogenic activities.


2019 ◽  
Vol 51 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Yueguan Zhang ◽  
Zhenchun Hao ◽  
Chong-Yu Xu ◽  
Xide Lai

Abstract Located in the Tibetan Plateau, the upstream regions of the Mekong River (UM) and the Salween River (US) are very sensitive to climate change. The ‘VIC-glacier‘ model, which links a degree-day glacier algorithm with variable infiltration capacity (VIC) model, was employed and the model parameters were calibrated on observed streamflow, glacier mass balance and MODIS snowcover data. Results indicate that: (1) glacier-melt runoff exhibits a significant increase in both areas by the Mann–Kendall test. Snowmelt runoff shows an increasing trend in the UM, while the US is characterized by a decreasing tendency. In the UM, the snowmelt runoff peak shifts from June in the baseline period 1964–1990 to May for both the 1990s and 2000s; (2) rainfall runoff was considered as the first dominant factor driving changes of river discharge, which could be responsible for over 84% in total runoff trend over the two regions. The glacial runoff illustrates the secondary influence on the total runoff tendency; (3) although the hydrological regime is rain dominated in these two basins, the glacier compensation effect in these regions is obvious, especially in dry years.


Author(s):  
E.V. Pishchalnikova ◽  
E.V. Akilov

The phase state of precipitation is one of the significant climatic indicators in conditions of global warming. The distribution of the temporal frequency of precipitation forms gives an idea of the changes occurring in the environment. This article discusses the spatial and temporal distribution of precipitation, taking into account their morphological classification. A tendency to a decrease in the amount of precipitation falling in solid form has been established. The prevalence of the liquid phase of precipitation over solid in the annual amount by 3 % on average against the background of a greater repeatability of solid precipitation was revealed. Based on cluster analysis, zoning of the territory of the Perm region was carried out according to the prevailing forms of precipitation. Three zones have been distinguished: northeast, center and south. Particular attention is paid to certain types of precipitation: mixed and supercooled, as the most difficult to predict and having complex formation mechanisms. Favorable synoptic situations were determined: a warm sector of a cyclone and a hollow with a warm front. An analysis of the thermal state of the lower troposphere made it possible to establish the thickness of the warm layer (if any), the height of the zero isotherm, and the prevailing surface air temperature.


2019 ◽  
Vol 22 (15) ◽  
pp. 3249-3261
Author(s):  
XX Cheng ◽  
G Wu ◽  
L Zhao ◽  
PF Li ◽  
YJ Ge

Effects of wind-induced internal pressures on the cooling tower’s structural performances are as significant as those of wind-induced external pressures. However, comparing to wind-induced external pressures, limited research focuses on wind pressures on the internal surfaces of large cooling towers. To fill up the scientific void, numerical analyses, physical model tests, and analytical studies are undertaken in this article. It is demonstrated that the draught ventilation ratio (i.e. the total area of the openings on the stuffing layer divided by the area of the stuffing layer) is the dominant factor for wind-induced internal pressures on large cooling towers, and 15% draught ventilation ratio can be regarded as the most unfavorable case. Besides, it is revealed that the theoretical formulation of the internal pressure on a single-cell building with a dominant opening and background porosity proposed by some other researchers can be applied to the case of a cooling tower subjected to strong winds. Using the validated theoretical formulation, the geometry of a large cooling tower is optimized with regard to the most favorable wind-induced internal pressure. The findings of this article are helpful for improving the current Chinese Code that governs the design of cooling towers.


Sign in / Sign up

Export Citation Format

Share Document