Effect of the milling method and particle structure on the color tone of (Cr, Fe)2O3 inorganic black masterbatch pigment

2022 ◽  
pp. 103421
Author(s):  
Emre Aslan ◽  
Melis Bulut ◽  
Alejandro Grijalbo ◽  
Buğra Çiçek
Author(s):  
A. K. Datye ◽  
D. S. Kalakkad ◽  
L. F. Allard ◽  
E. Völkl

The active phase in heterogeneous catalysts consists of nanometer-sized metal or oxide particles dispersed within the tortuous pore structure of a high surface area matrix. Such catalysts are extensively used for controlling emissions from automobile exhausts or in industrial processes such as the refining of crude oil to produce gasoline. The morphology of these nano-particles is of great interest to catalytic chemists since it affects the activity and selectivity for a class of reactions known as structure-sensitive reactions. In this paper, we describe some of the challenges in the study of heterogeneous catalysts, and provide examples of how electron holography can help in extracting details of particle structure and morphology on an atomic scale.Conventional high-resolution TEM imaging methods permit the image intensity to be recorded, but the phase information in the complex image wave is lost. However, it is the phase information which is sensitive at the atomic scale to changes in specimen thickness and composition, and thus analysis of the phase image can yield important information on morphological details at the nanometer level.


2019 ◽  
Vol 1 (1) ◽  
pp. 28-33
Author(s):  
Asghar Kazemzadeh ◽  
Mohammad Ali Meshkat ◽  
Hooman Kazemzadeh ◽  
Mostafa Moradi ◽  
Reza Bahrami ◽  
...  

2019 ◽  
pp. 38-42
Author(s):  
V. N. Gadalov ◽  
◽  
A. E. Gvozdev ◽  
A. G. Kolmakov ◽  
I. V. Vornacheva ◽  
...  
Keyword(s):  

Author(s):  
A.V. Stomatov ◽  
D.V. Stomatov ◽  
P.V. Ivanov ◽  
V.V. Marchenko ◽  
E.V. Piitsky ◽  
...  

In this work, the authors studied and compared the two main methods used in dental practice for the automated production of orthopedic structures: the widely used CAD / CAM milling method and the 3D printing technology. As an object of research, temporary crowns were used, which were made on the basis of the same digital model: a) by the method of CAD / CAM milling from polymethylmethacrylate disks; b) by 3D printing from photopolymer resin based on LCD technology. Comparison of production methods and finished designs was carried out according to the following characteristics: strength, durability, aesthetic qualities, accuracy of orthopedic designs, etc. According to the results of the study, it was concluded that 3D printing can be a good alternative to CAD / CAM milling in solving problems of temporary prosthetics.


2018 ◽  
Vol 24 (15) ◽  
pp. 1682-1688 ◽  
Author(s):  
Yu Jinsui ◽  
Situ Bing ◽  
Luo Muhua ◽  
Li Yue ◽  
Liao Jianyi ◽  
...  

Introduction: Although a great many strategies have been proposed for tumor-targeted chemotherapy, current delivery methods of anticancer drugs present limited success with inevitable systemic toxicity. The aim of this study was to develop a new kind of theranostic carrier for targeted tumor therapy. Methods: Prior to prepare CHC-PFP-DOX, carboxymethyl-hexanoyl chitosan (CHC) was synthesized by acylation of carboxymethyl chitosan. To develop CHC-PFP, perfluoropentane (PFP), an ultrasound gas precursor, was simultaneously encapsulated into the hydrophobic inner cores of pre-formulated CHC micelle in aqueous phase via using the oil in water (O/W) emulsion method. The size distribution and surface charges of these nanodroplets were measured and the morphology was observed by transmission electron microscopy (TEM). For ultrasound imaging application, in vitro model was established to evaluate the imaging of CHC-PFP-DOX under different concentration and mechanical index. After that, the anti-tumor effect of ultrasound combined with CHC-PFPDOX on ovarian cancer cells was investigated. Results: The resulting CHC-PFP-DOX had a nano-sized particle structure, with hydrophobic anticancer DOX/PFP inner cores and a hydrophilic carboxymethyl chitosan polymer outer shell. The favorable nano-scaled size offers the potential to extravagate from veins and accumulate in tumor tissues via enhanced permeation and retention (EPR) effect. Additionally, CHC-PFP-DOX showed the ability to serve as ultrasound imaging agent at body temperature. Notably, it exhibited an ultrasound-triggered drug release profile through the external ultrasound irradiation. Further study demonstrated that ultrasound combined with CHC-PFP-DOX can improve the killing effect of chemotherapy for tumor. Conclusion: CHC-PFP-DOX holds great promise in simultaneous cancer-targeting ultrasound imaging and ultrasound- mediated delivery for cancer chemotherapy.


2018 ◽  
Vol 12 (4) ◽  
pp. 264-271 ◽  
Author(s):  
Alireza Izadi ◽  
Fariborz Vafaee ◽  
Arash Shishehian ◽  
Ghodratollah Roshanaei ◽  
Behzad Fathi Afkari

Background. Recently, non-presintered chromium-cobalt (Cr-Co) blocks with the commercial name of Ceramill Sintron were introduced to the market. However, comprehensive studies on the dimensional accuracy and fit of multi-unit frameworks made of these blocks using the coordinate measuring machine (CMM) are lacking. This study aimed to assess and compare the dimensional changes and fit of conventional casting and milled frameworks using Ceramill Sintron. Methods. A metal model was designed and scanned and 5-unit frameworks were fabricated using two techniques: (I) the conventional casting method (n=20): the wax model was designed, milled in the CAD/CAM machine, flasked and invested; (II) the milling method using Ceramill Sintron blocks (n=20): the wax patterns of group 1 were used; Ceramill Sintron blocks were milled and sintered. Measurements were made on the original reference model and the fabricated frameworks using the CMM in all the three spatial dimensions, and dimensional changes were recorded in a checklist. Data were analyzed with descriptive statistics, and the two groups were compared using one-way ANOVA and Tukey test (α=0.05). Results. The fabricated frameworks in both groups showed significant dimensional changes in all the three dimensions. Comparison of dimensional changes between the two groups revealed no significant differences (P>0.05) except for transverse changes (arch) that were significantly greater in Ceramill Sintron frameworks (P<0.05). Conclusion. The two manufacturing processes were the same regarding dimensional changes and the magnitude of marginal gaps and both processes resulted in significant dimensional changes in frameworks. Ceramill Sintron frameworks showed significantly greater transverse changes than the conventional frameworks.


2021 ◽  
Vol 11 (9) ◽  
pp. 4010
Author(s):  
Seon-Chil Kim

In the field of medical radiation shielding, there is an extensive body of research on process technologies for ecofriendly shielding materials that could replace lead. In particular, the particle size and arrangement of the shielding material when blended with a polymer material affect shielding performance. In this study, we observed how the particle size of the shielding material affects shielding performance. Performance and particle structure were observed for every shielding sheet, which were fabricated by mixing microparticles and nanoparticles with a polymer material using the same process. We observed that the smaller the particle size was, the higher both the clustering and shielding effects in the high-energy region. Thus, shielding performance can be improved. In the low-dose region, the effect of particle size on shielding performance was insignificant. Moreover, the shielding sheet in which nanoparticles and microsized particles were mixed showed similar performance to that of the shielding sheet containing only microsized particles. Findings indicate that, when fabricating a shielding sheet using a polymer material, the smaller the particles in the high-energy region are, the better the shielding performance is. However, in the low-energy region, the effect of the particles is insignificant.


2021 ◽  
Vol 13 (11) ◽  
pp. 13705-13713
Author(s):  
Shoma Kitamura ◽  
Motoyuki Iijima ◽  
Junichi Tatami ◽  
Tsubasa Fuke ◽  
Takashi Hinotsu ◽  
...  

Friction ◽  
2021 ◽  
Author(s):  
Liangfei Wu ◽  
Zhaozhu Zhang ◽  
Mingming Yang ◽  
Junya Yuan ◽  
Peilong Li ◽  
...  

AbstractRecently, great effort has been devoted to prepare various reinforce fillers to improve polymer performances, but ignoring the importance of raw polymer powders which are indispensable parts of hot-pressed polymer composites. Herein, we engineer raw polyimide (PI) powders with the assistance of polydopamine (PDA) in aqueous solutions. After the modification, polymer powders change from hydrophobic to hydrophilic, which makes it is possible to further modification of polymer powders in liquid phase. During the curing process of modified polymer powders, the partial dehydration of the catechol groups and crosslinking of PDA via C-O-C bonds are confirmed. Based on the features of PDA, a non-destructive mixing method is utilized to realize homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in polymer matrix. In comparison with ball milling method, this way can preserve the integrated innate structure of MWCNTs effectively. Besides, by taking full advantage of the reducing and metal-coordination capability of PDA, Cu2+ is successfully loaded onto the surfaces of polymer powders. The related characterizations demonstrate that Cu2+in situ converts to metallic copper rather than copper oxide during the hot pressing process. The tribological properties of corresponding polymer composites are also studied. These results indicate that modifying polymer powders with PDA is multi-profit and presents practical application prospect.


Sign in / Sign up

Export Citation Format

Share Document