scholarly journals Design and Fabrication of 3-DOF Robot Arm Using Parallelogram Mechanisms

This paper focuses on the design, fabrication and control of a 3-DOF robot arm using stepper motors. The robot arm uses three parallelogram mechanisms to position the end-effector of the robot and keep the end-effector always parallel to the horizontal during the robot motion. The robot is designed on the Autodesk Inventor software. Separated parts of the robot are saved in the stereolithography (STL) file format. Then the parts are fabricated by a 3D printer. The movement of the robotic arm is driven by stepper motors and controlled by Arduino. The Arduino board implements kinematics calculation, creates pulses and sends them to three drivers to driven stepper motors. A software is developed to control the robot by sending the command to the Arduino board.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Longtao Mu ◽  
Yunfei Zhou ◽  
Tiebiao Zhao

Abstract This paper studies the robot arm sorting position control based on robot operation system (ROS), which works depending on the characteristics of the robot arm sorting operation using the top method, to automate the sorting operation and improve the work efficiency of workpiece sorting. Through the ROS MoveIt! module, the sorting pose and movement path of the robotic arm are planned, the inverse kinematics of the sorting robotic arm is solved, and the movement pose characteristics of the sorting robotic arm are analysed. The robot arm model was created using Solidworks software, and the URDF model file of the robot arm was exported through the sw2urdf plugin conversion tool, and the parameters were configured. Based on ROS for 6-degree-of-freedom (DOF) robot motion simulation, random extended tree (RRT) algorithm from open motion planning library (OMPL) is selected. The robot motion planning analysis and sorting manipulator drive UR5 manipulator. The results show that the sorting pose and motion trajectory of the robot arm are determined by controlling the sorting pose of the sorting robot arm, and the maximum radius value of the tool centre point (TCP) rotation of the robot arm and the position of the workpiece are obtained. This method can improve the success rate of industrial sorting robots in grabbing objects. This analysis is of great significance to the research of robots’ autonomous object grabbing.


Author(s):  
Akhmad Fahruzi ◽  
Bimo Satyo Agomo ◽  
Yulianto Agung Prabowo

Nowadays robotic arm is widely used in various industries, especially those engaged in manufacturing. Robotic arms are usually used to perform jobs such as picking up and moving goods from their place of origin to the location desired by the operator. In this study, a 3d 4 DOF (Degree of Freedom) robotic arm. The prototype was made to move goods with random coordinates to places or boxes whose coordinates were determined in advance. The robot can know the coordinates of the object to be taken or moved. The arm robot prototype design is completed with a camera connected to a computer, where the camera is installed statically (fixed position) above the robot's work area. The camera functions like image processing to detect the object's position by taking the coordinates of the object. Then the object coordinates will be input into inverse kinematics that will produce an angle in every point of the servo arm so that the position of the end effector on the robot arm can be founded and reach the intended object. From the results of testing and analysis, it was found that the error in the webcam test to detect object coordinates was 2.58%, the error in the servo motion test was 12.68%, and the error in the inverse kinematics test was 7.85% on the x-axis, the error was 6.31% on the y-axis and an error of 12.77% on the z-axis. The reliability of the whole system is 66.66%.


2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 6-12
Author(s):  
Kateryna Maiorova ◽  
Iurii Vorobiov ◽  
Maksym Boiko ◽  
Valeriia Suponina ◽  
Oleh Komisarov

The subject of this research is the technology of reengineering and control of parts of aircraft objects (AOs) and technological equipment for their manufacture. The predefined accuracy of the keel of a light aircraft and molding surfaces of technological equipment for its manufacture has been ensured by using reengineering technology and CAD systems. A portrait of the actual physically existing keel of a light aircraft was built in the *.stl file format using the software Artec Studio (USA). The control and comparison of the geometry of the shapes of the analytical standard with the actual physically existing keel of a light aircraft based on its portrait have been implemented. The methods used are the analysis and synthesis of the experimental geometry of shapes, the method of expert evaluations. The following results were obtained: based on the analysis and synthesis, the presence of significant errors in the accuracy of the manufacture of the keel for a light aircraft in the range from −5.26 mm to +5.39 mm was detected. It has been shown that the key factor is the keel's relative plane indicator, which is outside the tolerance margin and is 85 %. It was decided to fabricate new technological equipment from another material – organic plastics. Control of the technological equipment made from organic plastics for the keel of a light aircraft showed that the shape-forming surfaces of the equipment have appropriate shapes and sizes corresponding to the existing analytical standard and are devoid of inaccuracies that occurred in the previous version. The range of keel margins that was made using the new technological equipment from organic plastics is from –0.51 mm to +0.34 mm while the relative plane of the keel outside the tolerance margin does not exceed 15 %. The study results showed the adequacy of the decisions taken, ensuring the predefined accuracy for the keel of a light aircraft and molding surfaces of technological equipment for its manufacture.


Author(s):  
Yakup Kutlu ◽  
Zulfu Alanoglu ◽  
Ahmet Gokcen ◽  
Mustafa Yeniad

In this study, computer vision application was realized by using Raspberry Pi, USB camera and 3D robotic arm system, which are designed with 3D modeling programs and output from 3D printer. The system automatically determines the position information of the detected objects from the camera and calculates the directions and angles of the robot joints using the position information. Because of calculations, the robot Arm moves to the target. The robot arm is 6-axis industrial type. The Raspberry PI-based system uses python programming language and OpenCV library for image processing.


Robotica ◽  
2001 ◽  
Vol 19 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Y.M. Chen ◽  
C.S. Hsueh

We present a data fusion control scheme for the hand-held camera of the SCORBOT-ER VII robot arm for learning visual tracking and interception. The control scheme consists of two modules: The first one generates candidate actions to drive the end-effector as accurate as possible directly above a moving target, so that the second module can handily take over to intercept it. The desired camera-joint coordinate mappings are generalized by Elman neural networks for a tracking module. The intercept module then determines a suitable intercept trajectory for the robot within the required conditions. The simulation results support the claim that it could be successfully applied to track and intercept a moving target.


2013 ◽  
Vol 694-697 ◽  
pp. 1662-1666 ◽  
Author(s):  
Yu Zhu Zhang ◽  
Xin Meng ◽  
Zhong Shi Pan

As robots are employed in various fields of manufacturing process, its modeling and analysis is an important process during robot design. Therefore, based on simulation technology, a multi-degree of freedom (DOF) robot arm manipulator simulation and visualization platform is proposed due to the DOF of the joints on a robot differs in specific projects. The Denavit Hartenberg (DH) parametric scheme is adopted in the workspace analysis and relative position computation model. The latter calculates the distance and position between the end-effector and the target. And then, a test case using the platform is presented, the results showed that the platform is feasible for robot design.


Author(s):  
Francesca Sorgini ◽  
Giuseppe Airò Farulla ◽  
Nikola Lukic ◽  
Ivan Danilov ◽  
Bozica Bojovic ◽  
...  

Research on bidirectional human-machine interfaces will enable the smooth interaction with robotic platforms in contexts ranging from industry to tele-medicine and rescue. This paper introduces a bidirectional communication system to achieve multisensory telepresence during the gestural control of an industrial robotic arm. We complement the gesture-based control by means of a tactile-feedback strategy grounding on a spiking artificial neuron model. Force and motion from the robot are converted in neuromorphic haptic stimuli delivered on the user’s hand through a vibro-tactile glove. Untrained personnel participated in an experimental task benchmarking a pick-and-place operation. The robot end-effector was used to sequentially press six buttons, illuminated according to a random sequence, and comparing the tasks executed without and with tactile feedback. The results demonstrated the reliability of the hand tracking strategy developed for controlling the robotic arm, and the effectiveness of a neuronal spiking model for encoding hand displacement and exerted forces in order to promote a fluid embodiment of the haptic interface and control strategy. The main contribution of this paper is in presenting a robotic arm under gesture-based remote control with multisensory telepresence, demonstrating for the first time that a spiking haptic interface can be used to effectively deliver on the skin surface a sequence of stimuli emulating the neural code of the mechanoreceptors beneath.


2014 ◽  
Vol 984-985 ◽  
pp. 1245-1252 ◽  
Author(s):  
Jayabalan Sudharsan ◽  
L. Karunamoorthy

Designing a humanoid robot is a complex issue and the exact resemblance of human arm movements has not been achieved in many of the previously developed robots. This paper is going to be much focused on the design of a humanoid robot arm which has a unique approach which has never been developed earlier. Even though all the robots that have been developed using 6-Degrees of Freedom (DOF) and 7-DOF can reach any point in the space, some of the orientation cannot be reached by the end effector plane effectively. So an 8-DOF freedom based robotic arm has been specially designed and developed to resemble the exact movements of the human being. This robot has 3-DOF for shoulder joint, 2-DOF for the elbow joint, and 3-DOF for the wrist with fingers as the end effector. Almost all the robots have only 1-DOF to the elbow joint but here 2-DOF has been proposed to resemble the exact movements of the human being (2-DOF at elbow) to solve the above mentioned problem. Literature reviews and design model are discussed in detail to support the proposal that has been made. Forward and inverse Kinematic relationships are also obtained for the joint link parameter. This humanoid robot arm which has been designed and developed is one of the modules of a human size humanoid robot RALA (Robot based on Autonomous Learning Algorithm).


Author(s):  
Anwer Sabah Ahmed ◽  
Heyam A. Marzog ◽  
Laith Ali Abdul-Rahaim

Every day, the technologies are expanding and developed with extra things to them. A cloud computing (CC) and Internet of things (IoT) became deeply associated with technologies of the internet of future with one supply the other a way helping it for the successful. Arduino microcontroller is used to design robotic arm to pick and place the objects by the web page commands that can be used in many industrials. It can pick and place an object from source to destination and drive the screws in into its position safely. The robot arm is controlled using web page designed by (html) language which contain the dashboard that give the commands to move the servos in the desired angle to get the aimed direction accordingly. At the receiver end there are four servo motors which are made to be interfaced with the micro controller (Arduino) which is connected to the wireless network router. One of these is for the arm horizontally movement and two for arm knee, while the fourth is for catch tings or tight movement. Two ultra-sonic sensors are used for limiting the operation area of the robotic arm. Finally, Proteus program is used for the simulation the controlling of robot before the hardware installation


Author(s):  
Hussein Mohammed Ali ◽  
Yasir Hashim ◽  
Ghadah Alaadden Al-Sakkal

<p><span>This study presents the model, design, and construction of the Arduino based robotic arm, which functions across a distance as it is controlled through a mobile application. A six degree of freedom robotic arm has been designed and implemented for the purpose of this research. The design controlled by the Arduino platform receives orders from the user’s mobile application through wireless controlling signals, that is Bluetooth. The arm is made up of five rotary joints and an end effector, where rotary motion is provided by the servomotor. Each link has been first designed using solid works and then printed by 3D printer. The assembly of the parts of the robot and the motor’s mechanical shapes produce the final prototype of the arm. The Arduino has been programmed to provide rotation to each corresponding servo motor to the sliders in the designed mobile application for usage from distance.</span></p>


Sign in / Sign up

Export Citation Format

Share Document