bonded particles
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Xizhong Chen ◽  
Di Peng ◽  
John P. Morrissey ◽  
Jin Y. Ooi

AbstractBonded contact models have been increasingly used in the discrete element method (DEM) to study cemented and sintered particulate materials in recent years. Several popular DEM bond models have been proposed in the literature; thus it is beneficial to assess the similarities and differences between the different bond models before they are used in simulations. This paper identifies and discusses two fundamental types of bond models: the Spring Bond Model where two bonded particles are joined by a set of uniform elastic springs on the bond’s cross-section, and the Beam Bond Model in which a beam is used to connect the centres of two particles. A series of cantilever beam bending simulation cases were carried out to verify the findings and assess the strength and weakness of the bond models. Despite the numerous bond models described in the literature, they can all be considered as a variation of these two fundamental model types. The comparative evaluation in this paper also shows that all the bond models investigated can be unified to a general form given at a predefined contact point location.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4413
Author(s):  
Łukasz Sobczak ◽  
Dominika Kołodziej ◽  
Krzysztof Goryński

Octadecyl (C18) groups are arguably the most popular ligands used for preparation of solid phase microextraction (SPME) devices. However, conventional C18-bonded silica particles are not fully compatible with the nearly 100% aqueous composition of typical biological samples (e.g., plasma, saliva, or urine). This study presents the first evaluation of thin-film SPME devices coated with special water-compatible C18-bonded particles. Device performance was assessed by extracting a mixture of 30 model compounds that exhibited various chemical structures and properties, such as hydrophobicity. Additionally, nine unique compositions of desorption solvents were tested. Thin-film SPME devices coated with C18-bonded silica particles with polar end-capping groups (10 µm) were compared with conventional trimethylsilane end-capped C18-bonded silica particles of various sizes (5, 10, and 45 µm) and characteristics. Polar end-capped particles provided the best extraction efficacy and were characterized by the strongest correlations between the efficacy of the extraction process and the hydrophobicity of the analytes. The results suggest that the original features of octadecyl ligands are best preserved in aqueous conditions by polar end-capped particles, unlike with conventional trimethylsilane end-capped particles that are currently used to prepare SPME devices. The benefits associated with this improved type of coating encourage further implementation of microextractraction as greener alternative to the traditional sample preparation methods.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 908
Author(s):  
Rodrigo Coldebella ◽  
Marina Gentil ◽  
Camila Berger ◽  
Henrique W. Dalla Costa ◽  
Cristiane Pedrazzi ◽  
...  

Aerogels are 3-D nanostructures of non-fluid colloidal interconnected porous networks consisting of loosely packed bonded particles that are expanded throughout their volume by gas and exhibit ultra-low density and high specific surface area. Cellulose-based aerogels can be obtained from hydrogels through a drying process, replacing the solvent (water) with air and keeping the pristine three-dimensional arrangement. In this work, hybrid cellulose-based aerogels were produced and their potential for use as dressings was assessed. Nanofibrilated cellulose (NFC) hydrogels were produced by a co-grinding process in a stone micronizer using a kraft cellulosic pulp and a phenolic extract from Maclura tinctoria (Tajuva) heartwood. NFC-based aerogels were produced by freeze followed by lyophilization, in a way that the Tajuva extract acted as a functionalizing agent. The obtained aerogels showed high porosity (ranging from 97% to 99%) and low density (ranging from 0.025 to 0.040 g·cm−3), as well a typical network and sheet-like structure with 100 to 300 μm pores, which yielded compressive strengths ranging from 60 to 340 kPa. The reached antibacterial and antioxidant activities, percentage of inhibitions and water uptakes suggest that the aerogels can be used as fluid absorbers. Additionally, the immobilization of the Tajuva extract indicates the potential for dentistry applications.


2021 ◽  
Vol 33 (2) ◽  
pp. 023303
Author(s):  
Fernando David Cúñez ◽  
Nicolao Cerqueira Lima ◽  
Erick M. Franklin

Author(s):  
Nicolao Lima ◽  
Fernando Cúñez ◽  
Erick de Moraes Franklin

Soft Matter ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 256-269 ◽  
Author(s):  
Hong T. Nguyen ◽  
Alan L. Graham ◽  
Peter H. Koenig ◽  
Lev D. Gelb

The effects of particle roughness and short-ranged non-central forces on colloidal gels are studied using computer simulations in which bonded particles experience a sinusoidal variation in energy as they rotate.


2019 ◽  
Vol 36 (2) ◽  
pp. 691-706 ◽  
Author(s):  
Min Wang ◽  
Y.T. Feng ◽  
Ting T. Zhao ◽  
Yong Wang

Purpose Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation. Design/methodology/approach The mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values. Findings It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured. Originality/value A novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.


2018 ◽  
Vol 5 (11) ◽  
pp. 181127
Author(s):  
Joost H. J. van Opheusden ◽  
Jaap Molenaar

We have developed an algorithm for a particle-based model for the growth of plant tissues in three dimensions in which each cell is represented by a single particle, and connecting cell walls are represented as permanent bonds between particles. A sample of plant tissue is represented by a fixed network of bonded particles. If, and only if a cell divides, this network is updated locally. The update algorithm is implemented in a model where cell growth and division gives rise to forces between the cells, which are relaxed in steepest descent minimization. The same forces generate a pressure inside the cells, which moderates growth. The local nature of the algorithm makes it efficient computationally, so the model can deal with a large number of cells. We used the model to study the growth of plant tissues for a variety of model parameters, to show the viability of the algorithm.


Author(s):  
Maryam Alihosseini ◽  
Paul Uwe Thamsen

Sewer sediment deposition represents a crucial aspect of the maintenance of wastewater systems and has negative effects on the system itself as well as the environment. Therefore, it is important to design combined sewers, as sewage collection systems with high deposition risk, with adequate self-cleansing velocity to avoid the deposition. Despite the large number of investigations, the lack of knowledge about the particle behaviour in sewers remains a major problem in the field of sewer management. In the present work, the transport of sediments in partially filled channels is investigated experimentally and the results are compared to 3D-simulations performed with a coupled Computational Fluid Dynamics (CFD) model and Discrete Element Method (DEM). This research aims to investigate the self-cleansing design concept for uniform non-cohesive sediments based on moving of existing sediments on the sewer bed. The CFD part of the simulation is carried out in the commercial CFD software ANSYS Fluent, which is two-way coupled to the commercial DEM software EDEM through its User Defined Function. EDEM enhances the particle handling capability by resolving particle contacts, modelling bonded particles and non-spherical particles. The multiphase model Volume of Fluid (VOF) is used to capture the water and air interaction and the Discrete Phase Model (DPM) is applied to track the injected EDEM-particles. This paper also examines the applicability and limitations of this coupling method in simulation of sewer systems.


Sign in / Sign up

Export Citation Format

Share Document