marginal discrepancy
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 36)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Preetica Sharma ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Shefali Singh Malik

Abstract Aim and Objective The main aim of this study was to evaluate the effect of three different types of pattern materials on the vertical marginal accuracy of complete cast crown. Material and Methods Three groups of 20 specimens each were made based on three pattern materials, that is, blue inlay wax, autopolymerizing acrylic resin, and light cure pattern resin. Castings were made and examined using stereo microscope for vertical marginal discrepancy. Results The result showed that the highest mean gap was noticed in the castings fabricated using inlay type B pattern wax followed by the castings fabricated using autopolymerizing resin and the least mean gap was observed in the castings fabricated using light cure modeling material. Conclusion It was concluded from this study that the use of light cure modeling material to make patterns for casting with lost wax technique is best recommended than inlay type B pattern and autopolymerizing resin.


2021 ◽  
Vol 21 ◽  
pp. e225136
Author(s):  
Patrícia Valéria Manozzo Kunz ◽  
Gabriela Andrade Serpa ◽  
Leonardo Fernandes da Cunha ◽  
Gisele Maria Correr ◽  
Carla Castiglia Gonzaga

Aim: To evaluate the influence of cobalt-chromium (Co-Cr) coping fabrication methods and ceramic application on the marginal and internal fit of metal-ceramic crowns. Methods: Co-Cr copings for metal-ceramic crowns were prepared by lost wax casting or CAD-CAM machining of sintered blocks. The fit was analyzed using the silicone replica technique at four assessment points: marginal gap (MG), axial wall (AW), axio-occlusal (AO) angle, and central occlusal (CO) wall. After the initial analysis, the copings were ceramic-veneered with the layering technique, and the fit was again determined. Data were statistically analyzed by paired and unpaired Student’s-t test (α=0.05). Results: Marginal and internal fit before ceramic application according to the coping manufacturing method showed significant differences only at CO (p < 0.001), with milled copings (137.98±16.71 μm) showing higher gap values than cast copings (112.86±8.57 μm). For cast copings, there were significant differences at MG (before 109.13±8.79 μm; after 102.78±7.18 μm) and CO (before 112.86±8.57 μm; after 104.07±10.63 μm) when comparing the fit before and after ceramic firing. For milled copings, there was significant difference only at AO (before 116.39±9.64 μm; after 108.54±9.26 μm). Conclusion: This study demonstrated that the coping fabrication method influenced the internal fit. Ceramic firing maintained or improved the fit of the metal-ceramic crowns. The marginal discrepancy of all restorations, before and after ceramic firing, can be considered clinically acceptable.


Author(s):  
Safoura Ghodsi ◽  
Marzieh Alikhasi ◽  
Majid Sahebi ◽  
Vahideh Nazari

Objectives: This study aimed to investigate the marginal adaptation of implant-supported three-unit fixed restorations fabricated in excessive crown height by various frameworks namely zirconia, nickel-chromium (Ni-Cr) alloy, and Polyetheretherketone (PEEK) before and after veneering. Materials and Methods: A basic model with two implant fixtures was made to receive posterior three-unit fixed partial dentures (second premolar to second molar) in 15 mm crown height. A total of 30 frameworks were fabricated using Ni-Cr, zirconia, and PEEK (n=10). All specimens were veneered and vertical marginal discrepancy was evaluated before and after veneering using a stereomicroscope (×75). The effect of framework material and veneering on marginal discrepancy was evaluated by repeated-measures and one-way ANOVA, and paired t test (α=0.05). Results: There was a significant difference between the groups (P<0.001) before and after veneering. The vertical marginal discrepancy of zirconia frameworks was significantly lower than that of other groups both before and after veneering (P<0.001). Statistical analysis revealed that the veneering process had a significant effect on marginal adaptation (P<0.001). Conclusion: In implant prostheses with excessive crown height, zirconia had the greatest marginal adaptaion significantly, followed by Ni-Cr. Veneering caused a significant increase in marginal discrepancy of all the materials.


2021 ◽  
Vol 7 (2) ◽  
pp. 104-109
Author(s):  
Himanshu Aeran ◽  
Megha Sagar ◽  
Jyotsna Seth

The survival of fixed prosthodontic restorations depends on the state of the marginal adaptation. Marginal gaps can create a favourable condition for biofilm deposition, thereby contributing to the development of caries and periodontal disease. The longevity of fixed prosthodontic restorations depends on the condition of the marginal adaptation to the abutment teeth. The presented work aimed to study, evaluate and compare the marginal adaptation of All-Ceramic crowns fabricated using conventional laboratory procedures with those fabricated using the CAD/CAM technology.To compare the marginal fit and adaptation of All- Ceramic crowns obtained by conventional techniques and crowns obtained by CAD/CAM technique. The presented study focused on a total of 20 samples divided into two groups viz. Group I (Conventional) and Group II (CAD/CAM) having 10 sample each. The samples were prepared with the straight abutment having a standardized collar height of 2mm, HIOSSEN that was mounted on acrylic blocks using implant analogue, HIOSSEN. A set of crowns was produced by 5-axis milling lithium disilicate using glass-ceramic blocks with laboratory fabrication methods. Another set of zirconia crowns was produced using CAD/CAM technology. Circumferential marginal gap measurements were taken at 12 measurement locations on the hexagonal die marked equidistant to each other. Both the samples were measured for marginal discrepancy at under the stereomicroscope.The results obtained showed that the mean vertical gap for the group II samples showed the least variation in the marginal discrepancy. Although the mean obtained for both the groups showed that the mean vertical marginal discrepancy was within the clinically acceptable level.It can be concluded that within the limitation of the study the data obtained showed that The Mean vertical gap was the maximum for Group I (Conventional group) i.e. 49.25 µm showing maximum variation in marginal fit. While the CAD/CAM Group had shown least vertical marginal discrepancy which depicts statistically significant better marginal fit than those fabricated using conventional laboratory procedures.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jose Rosas ◽  
Frank Mayta-Tovalino ◽  
Violeta Malpartida-Carrillo ◽  
Arnaldo Munive Degregori ◽  
Roman Mendoza ◽  
...  

Aim. Vertical marginal discrepancy (VMD) influences the success of implant-supported restorations. However, there is little literature that has investigated the influence of geometry and cementing agent on changes in VMD of metal copings on implant abutments. The objective was to evaluate the effect of the geometry of the abutment and cementing agents on VMD. Methods. Cast copings were cemented on implant abutments customized cylindrical (4, 5.5, and 7 mm) and on hexagonal implant abutments (4 mm) cemented or uncemented molded copings were placed (n = 4, totally 64 samples) with different luting agents. The VMD of the copings were measured in the coping-abutment interface at three reference points using a stereomicroscope. The independent Student’s t test was used for comparison between the two different abutment walls. The post hoc statistical analysis was performed by the Tukey test. Results. There was a significant VMD increase between noncemented and cemented cast copings using different luting agents. Abutment geometry and luting agents significantly influenced the VMD p ≤ 0.05 . Cylindrical abutment at 7 mm in height cemented with different luting agent tested showed significantly higher VMD values than cylindrical abutments of 4 mm p = 0.019 . Hexagonal abutments with a 4 mm height showed significantly higher VMD values than cylindrical 4 mm abutments using zinc oxide noneugenol and glass ionomer cements p = 0.032 . Conclusions. Abutment geometry and luting agents influence the VMD of cast copings cemented on implant abutment. The higher the cylindrical abutment, the greater the VMD, and hexagonal wall abutments promote greater marginal gap.


2021 ◽  
Vol 11 (7) ◽  
pp. 2988
Author(s):  
Celia Tobar ◽  
Verónica Rodríguez ◽  
Carlos Lopez-Suarez ◽  
Jesús Peláez ◽  
Jorge Cortés-Bretón Brinckmann ◽  
...  

The introduction of new digital technologies represents an important advance to fabricate metal–ceramic restorations. However, few studies have evaluated the influence of these technologies on the fit of the restorations. The aim of this study was to evaluate the effect of different manufacturing techniques and pontic design on the vertical marginal fit of cobalt–-chromium (Co–Cr) posterior fixed partial dentures (FPDs) frameworks. Methods: Eighty stainless-steel dies were prepared to receive 3-unit FPDs frameworks with intermediate pontic (n = 40) and cantilever pontic (n = 40). Within each design, the specimens were randomly divided into four groups (n = 10 each) depending on the manufacturing technique: casting (CM), direct metal laser sintering (LS), soft metal milling (SM), and hard metal milling (HM). The frameworks were luted, and the vertical marginal discrepancy was assessed. Data analysis was made using Kruskal–Wallis and Mann–Whitney U tests (α = 0.05). Results: The vertical marginal discrepancy values of all FPDs were below 50 μm. The HM frameworks obtained the lowest misfit values in both designs. However, no differences were found among intermediate pontic groups or cantilevered groups. Likewise, when differences in a marginal discrepancy between both framework designs were analyzed, no differences were observed. Conclusions: The analyzed digital technologies demonstrated high precision of fit on Co–Cr frameworks and on both pontic designs.


Author(s):  
Ney Diegues Pacheco ◽  
Plinio Mendes Senna ◽  
Rafael Soares Gomes ◽  
Altair Antoninha Del Bel Cury

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 740
Author(s):  
Jie Wu ◽  
Hongjun Xie ◽  
Alireza Sadr ◽  
Kwok-Hung Chung

Different techniques have been used to construct provisional crowns to protect prepared teeth. The purpose of this in vitro study was to assess the internal fit and marginal discrepancy of provisional crowns made by different methods. A total of 48 provisional crowns were constructed and divided into three groups (n = 16) according to the fabrication methods: fabricated manually-group MAN; computer-aided design/computer aided manufacturing technology-group CAM; and 3-dimensional (3D)-printed technology-group 3DP. The same standard tessellation language (STL) file was used for both CAD/CAM and 3D-printed group. The silicone-checked method was used to measure the internal gap distance. The marginal discrepancy was measured by using the polyvinyl siloxane (PVS) replica method and swept-source optical coherence tomography (OCT) scanning technique. Data were analyzed with one-way analysis of variance (ANOVA) nonparametric Kruskal-Wallis and Tukey tests at α = 0.05. At the central pit and axial walls, the gap distance mean values of group CAM were higher than those from group MAN and 3DP. The group 3DP was statistically significantly higher in gap distance at the location of occlusion than group MAN and group CAM (p < 0.05). The total gap distances assessed by silicone-checked method revealed there were no statistically significant differences between the tested groups (p > 0.05). The total mean values of absolute and horizontal marginal discrepancy of the group 3DP obtained by using the PVS-replica method and OCT scanning technique were significantly higher than the group MAN and CAM (p < 0.05). Regression correlation results of marginal discrepancy indicated a positive correlation (r = 0.902) between PVS-replica method and OCT scanning technique. The manually fabricated provisional crowns presented better internal fit and a smaller marginal discrepancy. Between different assessment techniques for marginal adaptation, PVS-replica method and OCT scanning technique have a positive correlation.


Sign in / Sign up

Export Citation Format

Share Document