pinus bungeana
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 111 ◽  
pp. 103707
Author(s):  
Zhenjiang Lv ◽  
Lili Tang ◽  
Dengwu Li ◽  
Yongtao Wang ◽  
Mingjie Chang

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 359
Author(s):  
Ai-Fang Wang ◽  
Bao Di ◽  
Tapani Repo ◽  
Marja Roitto ◽  
Gang Zhang

Background and Objectives: Drought occurs more frequently in Northern China with the advent of climate change, which might increase the mortality of tree seedlings after afforestation due to hydraulic failure. Therefore, investigating water relations helps us understand the drought tolerance of tree seedlings. Electrical impedance spectroscopy (EIS) is widely used to assess the responses of plant tissues to stress factors and may potentially reveal the water relations of cells. The aim of this study is to reveal the relationships between EIS and water related parameters, produced by pressure–volume (PV) curves in lacebark pine (Pinus bungeana Zucc.) seedlings reacting to drought stress. Materials and Methods: Four-year-old pot seedlings were divided into three parts (0, 5, and 10 days of drought) before planting, the treated seedlings were then replanted, and finally exposed to post-planting drought treatments with the following soil relative water contents: (i) adequate irrigation (75%–80%), (ii) light drought (55%–60%), (iii) moderate drought (35%–40%), and (iv), severe drought (15%–20%). During the post-planting growth phase, the EIS parameters of needles and shoots, and the parameters of PV curves, were measured coincidently; thus, the correlations between them could be obtained. Results: The extracellular resistance (re) of needles and shoots were substantially reduced after four weeks of severe post-planting drought stress. Meanwhile, the osmotic potential at the turgor-loss point (ψtlp) and the saturation water osmotic potential (ψsat) of shoots decreased after drought stress, indicating an osmotic adjustment in acclimating to drought. The highest correlations were found between the intracellular resistance (ri) of the shoots and ψtlp and ψsat. Conclusions: EIS parameters can be used as a measure of drought tolerance. The change in intracellular resistance is related to the osmotic potential of the cell and cell wall elasticity. Extracellular resistance is a parameter that shows cell membrane damage in response to drought stress in lacebark pine seedlings.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 300 ◽  
Author(s):  
Congcong Guo ◽  
Yongbao Shen ◽  
Fenghou Shi

Pinus bungeana Zucc. ex Endl. is an endemic conifer tree species in China with high ornamental value. In order to investigate favorable conditions for seed germination and explore the germination inhibition mechanism of this species at high temperatures, the effects of temperature, light, and storage on the mean germination time (MGT), speed of germination (SG), and total germination percentage (TGP) are evaluated here. Seeds that have either been kept still or entered into a state of dormancy at high temperature are assessed here by a recovery experiment. Furthermore, the contribution of covering layers on thermo-inhibition is analyzed here, including the way they work. This has been realized by the structural observation and via the determination of the abscisic acid (ABA) content. The results show that seeds germinate to a high percentage (approximately 90%) at temperatures of 15 or 20 °C, with or without light, whereas higher temperatures of 25 or 30 °C impeded radicle protrusion and resulted in the germination percentage decreasing sharply (within 5%). Inhibition at high temperatures was thoroughly reversed (bringing about approximately 80% germination) by placing the ungerminated seeds in favorable temperatures and incubating them for an additional 30 days. Dry cold storage did little to reduce the temperature request for germination. Embryo coverings, especially the nucellar membrane, and ABA levels both had a dominant role in seed germination regulation in response to temperature. Under favorable temperature conditions, the levels of ABA significantly decreased. Germination occurred when the levels dropped to a threshold of 15 ng/g (FW (Fresh Weight)). Incubation at a high temperature (25 °C) greatly increased ABA levels and caused the inhibition of radicle protrusion.


2020 ◽  
Vol 96 (3) ◽  
Author(s):  
Lijun Bao ◽  
Likun Gu ◽  
Bo Sun ◽  
Wenyang Cai ◽  
Shiwei Zhang ◽  
...  

ABSTRACT Phyllosphere harbors diverse microorganisms, which influence plant growth and health. In order to understand the extent to which environmental factors affect epiphytic microbial communities, we characterized microbial communities on leaves of three separate tree species present on the college campus, and also present within a forest park over two seasons. Quantitative PCR analysis showed the quantity of 16S rRNA genes was lower in May compared with October, while the abundances of functional genes (nifH and bacterial amoA genes) were extremely high in May. High-throughput sequencing revealed a large variation in the diversity and composition of bacterial and diazotrophic communities over the two seasons, and showed the abundance of functional genera, such as Nocardioides, Bacillus and Zoogloea were significantly elevated in May. In addition, xenobiotic biodegradation pathways of bacterial communities were clearly elevated in May. Network analysis showed the correlations between phyllospheric bacteria in May were more complex than that in October and showed greater negative correlations. These results were consistent in all tree species in this study. This study showed that phyllospheric bacteria varied greatly in different seasons, which implies that different growing seasons should be considered in the exploitation of the interactions between phyllospheric microorganisms and host plants.


2019 ◽  
Vol 58 (3) ◽  
pp. 282-294
Author(s):  
Yi‐Xin Yang ◽  
Li‐Qiang Zhi ◽  
Yun Jia ◽  
Qiu‐Yi Zhong ◽  
Zhan‐Lin Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document