hnf1a gene
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 19)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 17 (4) ◽  
pp. 11-19
Author(s):  
D. E. Ivanoshchuk ◽  
A. K. Ovsyannikova ◽  
S. V. Mikhailova ◽  
E. V. Shakhtshneider ◽  
E. S. Valeev ◽  
...  

Maturity onset diabetes of the young is a dominantly inherited form of monogenic diabetes, diagnosed mainly before the age of 35 years. Mutations in the HNF1A and HNF4A genes are associated with diabetes mellitus of the HNF1A-MODY and HNF4A-MODY subtypes, respectively. These two forms of MODY are characterized by dyslipidemia in addition to impaired glucose metabolism due to the altered function HNF1A and HNF4A proteins. The aim of this study was a genetic analysis of young patients with the MODY phenotype and dyslipidemia with a burdened family history. Material and methods. The probands underwent targeted DNA sequencing using the Illumina MiSeq NGS System. The target panel included the coding regions and splicing sites of MODY-associated genes: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1. Results. A heterozygous single nucleotide deletion NM_000457.4: c.153del (3’rule) was found in proband P1 in the HNF4A gene. In proband P2, single nucleotide deletion NM_000545.8: c.335del (3 ‘rule) in the HNF1A gene was detected in a heterozygous state. Both variants are located in the coding parts of the genes, led to a shift in the reading frame and have not been described in the literature and databases earlier. Conclusions. Taking into account the phenotypic features of probands, we assume that the variants NM_000545.8: c.335del (rule 3) in the HNF1A gene and NM_000457.4: c.153del (rule 3) of the HNF4A gene are associated with different MODY subtypes in these individuals. After verification of MODY-HNF1A and MODY-HNF4A diagnosis, it is necessary to monitor the lipid profile parameters (total cholesterol, low and high density lipoprotein cholesterol, triglycerides) and prescribe appropriate drug therapy.


2021 ◽  
Author(s):  
Rachna Behl ◽  
Nishtha Malhotra ◽  
Vinay Joshi ◽  
Shruti Poojary ◽  
Sanniya Middha ◽  
...  

Abstract BackgroundPreviously, numerous case-control studies have highlighted variants responsible for Maturity onset diabetes of young (MODY). However, these studies have been conducted among diverse populations and hence yielded contradictory results. We, therefore, performed a meta-analysis to precisely find the association of SNPs with the disease for the HNF1A gene.ObjectiveMeta-analysis of clinically defined studies deciphering mutations in the HNF1A gene responsible for the development of MODY3 was conducted among various populations to determine associations using statistical approaches. MethodsThe curation of 505 research articles published between the years 2000-2021 was carried out. Visualization of data-related protocols and statistical-analysis were conducted, which led to the identification of highly prevalent mutations among different populations (majorly Europe). Further comparison between the frequencies of the control (healthy population) and test (diseased population) dataset generated through curation was performed.ResultsWe identified nine MODY3 mutations (rs587776825, rs1169288, rs1800574, rs2464196, rs137853244, rs137853238, rs587780357, rs137853240 and rs137853243) at the genome-wide significance level (p<5.0×10–8). The present study confirmed that the data does not follow a normal distribution. Further, the data was confirmed to be a more homogenous type with frequencies having a significant association with the disease.ConclusionThis meta-analysis found significant associations of mutations in HNF1A with MODY3, consistent with previous studies. Our findings should help elucidate the mutations in a compiled form responsible for causing MODY3.


Therapy ◽  
2021 ◽  
Vol 9_2021 ◽  
pp. 148-154
Author(s):  
Ivanoshchuk D.E. Ivanoshchuk ◽  
Mikhailova S.V. Mikhailova ◽  
Ovsyannikova A.K. Ovsyannikova A ◽  
Shakhtshneider E.V. Shakhtshneider ◽  
Druk I.V. Druk I ◽  
...  
Keyword(s):  

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 755
Author(s):  
Zsolt Gaál ◽  
Zsuzsanna Szűcs ◽  
Irén Kántor ◽  
Andrea Luczay ◽  
Péter Tóth-Heyn ◽  
...  

Maturity-onset diabetes of the young (MODY) has about a dozen known causal genes to date, the most common ones being HNF1A, HNF4A, HNF1B and GCK. The phenotype of this clinically and genetically heterogeneous form of diabetes depends on the gene in which the patient has the mutation. We have tested 450 Hungarian index patients with suspected MODY diagnosis with Sanger sequencing and next-generation sequencing and found a roughly 30% positivity rate. More than 70% of disease-causing mutations were found in the GCK gene, about 20% in the HNF1A gene and less than 10% in other MODY-causing genes. We found 8 pathogenic and 9 likely pathogenic mutations in the HNF1A gene in a total of 48 patients and family members. In the case of HNF1A-MODY, the recommended first-line treatment is low dose sulfonylurea but according to our data, the majority of our patients had been on unnecessary insulin therapy at the time of requesting their genetic testing. Our data highlights the importance of genetic testing in the diagnosis of MODY and the establishment of the MODY subtype in order to choose the most appropriate treatment.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1164
Author(s):  
Fernanda Iafusco ◽  
Giovanna Maione ◽  
Cristina Mazzaccara ◽  
Francesca Di Candia ◽  
Enza Mozzillo ◽  
...  

Monogenic diabetes (MD) represents a heterogeneous group of disorders whose most frequent form is maturity-onset diabetes of the young (MODY). MD is predominantly caused by a mutation in a single gene. We report a case of a female patient with suspected MD and a positive family history for diabetes and obesity. In this patient, two gene variants have been identified by next-generation sequencing (NGS): one in the Glucokinase (GCK) gene reported in the Human Gene Mutation Database (HGMD) and in the literature associated with GCK/MODY, and the other in the hepatocyte nuclear factor 1A (HNF1A) gene not previously described. The GCK variant was also identified in the hyperglycemic father, whereas the HNF1A variant was present in the mother. This new case of digenic GCK/HNF1A variants identified in a hyperglycemic subject, evidences the importance of NGS analysis in patients with suspected MD. In fact, this methodology will allow us to both increase the number of diagnoses and to identify mutations in more than one gene, with a better understanding of the genetic cause, and the clinical course, of the disease.


2021 ◽  
Vol 14 (1) ◽  
pp. e231837
Author(s):  
Raquel Vilela Oliveira ◽  
Teresa Bernardo ◽  
Sandrina Martins ◽  
Ana Sequeira

Maturity onset diabetes of the young defines a diabetes mellitus subtype, with no insulin resistance or autoimmune pancreatic β-cells dysfunction, that occurs by mutation in a single gene. A 13-year-old girl hospitalised due to hyperglycemia plus glycosuria without ketosis, and with normal glycated haemoglobin of 6.8%. She started a sugar-free fast-absorption diet and no insulin therapy was required. Fasting glucose was normal, but 2 hours after lunch she presented hyperglycemia as after 2 hours of an oral glucose tolerance test, with 217 mg/dL. Family history was positive for type 2 diabetes mellitus with an autosomal dominant pattern. She was discharged with fast-absorption sugar-free diet and low-dose of sulfonylurea. A genetic test was performed detecting a mutation in heterozygosity of HNF1A gene, compatible with the diagnosis of maturity onset diabetes of the young 3 (MODY3), not reported in the literature. Early recognition of signs and symptoms increase awareness of MODY. Genetic test allows confirmation and leads to optimised treatment.


2020 ◽  
Author(s):  
Keyword(s):  

2020 ◽  
Vol 105 (4) ◽  
pp. e1377-e1386
Author(s):  
Jana Malikova ◽  
Alba Kaci ◽  
Petra Dusatkova ◽  
Ingvild Aukrust ◽  
Janniche Torsvik ◽  
...  

Abstract Context While rare variants of the hepatocyte nuclear factor-1 alpha (HNF1A) gene can cause maturity-onset diabetes of the young (HNF1A-MODY), other variants can be risk factors for the development of type 2 diabetes. As has been suggested by the American College of Medical Genetics (ACMG) guidelines for variant interpretation, functional studies provide strong evidence to classify a variant as pathogenic. Objective We hypothesized that a functional evaluation can improve the interpretation of the HNF1A variants in our Czech MODY Registry. Design, Settings, and Participants We studied 17 HNF1A variants that were identified in 48 individuals (33 female/15 male) from 20 Czech families with diabetes, using bioinformatics in silico tools and functional protein analyses (transactivation, protein expression, DNA binding, and nuclear localization). Results Of the 17 variants, 12 variants (p.Lys120Glu, p.Gln130Glu, p.Arg131Pro, p.Leu139Pro, p.Met154Ile, p.Gln170Ter, p.Glu187SerfsTer40, p.Phe215SerfsTer18, p.Gly253Arg, p.Leu383ArgfsTer3, p.Gly437Val, and p.Thr563HisfsTer85) exhibited significantly reduced transcriptional activity or DNA binding (&lt; 40%) and were classified as (likely) pathogenic, 2/17 variants were (likely) benign and 3/17 remained of uncertain significance. Functional analyses allowed for the reclassification of 10/17 variants (59%). Diabetes treatment was improved in 20/29 (69%) carriers of (likely) pathogenic HNF1A variants. Conclusion Functional evaluation of the HNF1A variants is necessary to better predict the pathogenic effects and to improve the diagnostic interpretation and treatment, particularly in cases where the cosegregation or family history data are not available or where the phenotype is more diverse and overlaps with other types of diabetes.


2020 ◽  
Vol 9 (1) ◽  
pp. 288
Author(s):  
Maria I. Alvelos ◽  
Catarina I. Gonçalves ◽  
Eduarda Coutinho ◽  
Joana T. Almeida ◽  
Margarida Bastos ◽  
...  

Maturity-onset diabetes of the young (MODY) is a frequently misdiagnosed type of diabetes, which is characterized by early onset, autosomal dominant inheritance, and absence of insulin dependence. The most frequent subtypes are due to mutations of the GCK (MODY 2), HNF1A (MODY 3), and HNF4A (MODY 1) genes. We undertook the first multicenter genetic study of MODY in the Portuguese population. The GCK, HNF1A, and HNF4A genes were sequenced in 46 unrelated patients that had at least two of the three classical clinical criteria for MODY (age at diagnosis, family history, and clinical presentation). The functional consequences of the mutations were predicted by bioinformatics analysis. Mutations were identified in 23 (50%) families. Twelve families had mutations in the GCK gene, eight in the HNF1A gene, and three in the HNF4A gene. These included seven novel mutations (GCK c.494T>C, GCK c.563C>G, HNF1A c.1623G>A, HNF1A c.1729C>G, HNF4A c.68delG, HNF4A c.422G>C, HNF4A c.602A>C). Mutation-positive patients were younger at the time of diagnosis when compared to mutation-negative patients (14.3 vs. 23.0 years, p = 0.011). This study further expands the spectrum of known mutations associated with MODY, and may contribute to a better understanding of this type of diabetes and a more personalized clinical management of affected individuals.


Sign in / Sign up

Export Citation Format

Share Document