pdms microchannel
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7275
Author(s):  
Koungjun Min ◽  
Jaemook Lim ◽  
Ji Hwan Lim ◽  
Eunseung Hwang ◽  
Youngchan Kim ◽  
...  

Poly(dimethylsiloxane) has attracted much attention in soft lithography and has also been preferred as a platform for a photochemical reaction, thanks to its outstanding characteristics including ease of use, nontoxicity, and high optical transmittance. However, the low stiffness of PDMS, an obvious advantage for soft lithography, is often treated as an obstacle in conducting precise handling or maintaining its structural integrity. For these reasons, a Glass-PDMS-Glass structure has emerged as a straightforward alternative. Nevertheless, several challenges are remaining in fabricating Glass-PDMS-Glass structure through the conventional PDMS patterning techniques such as photolithography and etching processes for master mold. The complicated techniques are not suitable for frequent design modifications in research-oriented fields, and fabrication of perforated PDMS is hard to achieve using mold replication. Herein, we utilize the successive laser pyrolysis technique to pattern thin-film PDMS for microfluidic applications. The direct use of thin film at the glass surface prevents the difficulties of thin-film handling. Through the precise control of photothermal pyrolysis phenomena, we provide a facile fabrication process for perforated PDMS microchannels. In the final demonstration, the laminar flow has been successfully created owing to the smooth surface profile. We envision further applications using rapid prototyping of the perforated PDMS microchannel.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012050
Author(s):  
Pedro Pontes ◽  
Lourenço Martins ◽  
Iva Gonçalves ◽  
Ana S Moita ◽  
António LN Moreira

Abstract This work proposes a methodology in which high speed camera imaging is combined with infrared (IR) thermography to look at the effect of geometric parameters and boiling in the effectiveness of these coolers. PDMS microchannels were manufactured with 3 channel widths: 250, 500 and 750µm. HFE7100 was used as the refrigerant. Pressure losses were significant for the thinnest geometry as clogging and flow reversal were observed. The dissipated heat flux, as measured by the IR camera was higher in the largest channels, due to the PDMS poor conductivity. Results obtained with HFE7100 were then compared with those obtained with water at single-phase flow. For the same geometry, HFE 7100 resulted in a higher heat transfer coefficient than water.


2021 ◽  
Author(s):  
Serhat Sevli ◽  
not provided C. Yunus Sahan

Microfluidic chips, made of PDMS, are one-side open when fabricated. Another layer of glass, PDMS, or etc is needed. Liquid seal is provided by complete covalent bonding between layers or by external forces like threads, magnets or similar factors. This protocol describes the covalent bonding of PDMS on glass by air plasma technique.


2021 ◽  
Author(s):  
Serhat Sevli ◽  
not provided C. Yunus Sahan

Microfluidic chips, made of PDMS, are one-side open when fabricated. Another layer of glass, PDMS, or etc is needed. Liquid seal is provided by complete covalent bonding between layers or by external forces like threads, magnets or similar factors. This protocol describes the covalent bonding of PDMS on glass by air plasma technique.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1023
Author(s):  
Cynthia Galicia-Medina ◽  
Matías Vázquez-Piñón ◽  
Gibran Alemán-Nava ◽  
Roberto Gallo-Villanueva ◽  
Sergio Martínez-Chapa ◽  
...  

In this study, we carried out a heterogeneous cytoplasmic lipid content screening of Neochloris oleoabundans microalgae by dielectrophoresis (DEP), using castellated glassy carbon microelectrodes in a PDMS microchannel. For this purpose, microalgae were cultured in nitrogen-replete (N+) and nitrogen-deplete (N−) suspensions to promote low and high cytoplasmic lipid production in cells, respectively. Experiments were carried out over a wide frequency window (100 kHz–30 MHz) at a fixed amplitude of 7 VPP. The results showed a statistically significant difference between the dielectrophoretic behavior of N+ and N− cells at low frequencies (100–800 kHz), whereas a weak response was observed for mid- and high frequencies (1–30 MHz). Additionally, a finite element analysis using a 3D model was conducted to determine the dielectrophoretic trapping zones across the electrode gaps. These results suggest that low-cost glassy carbon is a reliable material for microalgae classification—between low and high cytoplasmic lipid content—through DEP, providing a fast and straightforward mechanism.


protocols.io ◽  
2021 ◽  
Author(s):  
Serhat Sevli ◽  
not provided C. Yunus Sahan
Keyword(s):  

Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 38
Author(s):  
Khaled Alsabbagh ◽  
Tim Hornung ◽  
Achim Voigt ◽  
Sahba Sadir ◽  
Taleieh Rajabi ◽  
...  

A microfluidic chip for electrochemical impedance spectroscopy (EIS) is presented as biosensor for the detection of cardiac troponin I (cTnI). Troponin I is one of the most specific diagnostic serum biomarkers for myocardial infarction. As impedimetric biosensors allow direct and label-free analyte detection, they are particularly suitable for fast biomarker detection. This is essential in the diagnosis of cardiac infarctions to enable an early treatment promoting a positive outcome. The microfluidic impedance biosensor chip presented here consists of a microscope glass slide serving as base plate, sputtered electrodes, and a polydimethylsiloxane (PDMS) microchannel. Electrode functionalization protocols were developed considering a low initial impedance in addition to analyte-specific binding by corresponding antibodies and reduction of non-specific protein adsorption to prevent false-positive signals. Reagents tested for self-assembled monolayers (SAMs) on gold electrodes included thiolated hydrocarbons and thiolated oligonucleotides, where SAMs based on the latter showed a better performance. The corresponding antibody (anti-cTnI) was covalently coupled on the SAM using carbodiimide chemistry. The PDMS microchannel was bonded on the glass slide with the functionalized electrodes, and the completed microfluidic impedance biosensor chip was connected to the readout system. Sampling and measurement took only a few minutes. Application of a human serum albumin (HSA) sample, 1000 ng/mL, led to negligible signal changes, while application of a troponin I sample, 1 ng/mL, led to a significant signal shift in the Nyquist plot. The results are promising regarding specific detection of clinically relevant concentrations of cardiac markers with the newly developed impedance biosensor chip.


2020 ◽  
Vol 12 (10) ◽  
pp. 241-249
Author(s):  
Kaiyue Chen ◽  
Nan Rong ◽  
Shujing Wang ◽  
Chunxiong Luo

Abstract Current microfluidic methods for studying multicell strains (e.g., m-types) with multienvironments (e.g., n-types) require large numbers of inlets/outlets (m*n), a complicated procedure or expensive machinery. Here, we developed a novel two-layer-integrated method to combine different PDMS microchannel layers with different functions into one chip by a PDMS through-hole array, which improved the design of a PDMS-based microfluidic system. Using this method, we succeeded in converting 2 × m × n inlets/outlets into m + n inlets/outlets and reduced the time cost of loading processing (from m × n to m) of the device for studying multicell strains (e.g., m-types) in varied multitemporal environments (i.e., n-types). Using this device, the dynamic behavior of the cell-stress-response proteins was studied when the glucose concentration decreased from 2% to a series of lower concentrations. Our device could also be widely used in high-throughput studies of various stress responses, and the new concept of a multilayer-integrated fabrication method could greatly improve the design of PDMS-based microfluidic systems.


Langmuir ◽  
2020 ◽  
Vol 36 (41) ◽  
pp. 12143-12149
Author(s):  
Wenming Li ◽  
Yogendra Joshi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document