scholarly journals Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6102
Author(s):  
Seunghyun Cheon ◽  
Manhee Byun ◽  
Dongjun Lim ◽  
Hyunjun Lee ◽  
Hankwon Lim

As many countries have tried to construct a hydrogen (H2) society to escape the conventional energy paradigm by using fossil fuels, methane pyrolysis (MP) has received a lot of attention owing to its ability to produce H2 with no CO2 emission. In this study, a techno-economic analysis including a process simulation, itemized cost estimation, and sensitivity and scenario analysis was conducted for the system of thermal-based and catalyst-based MP (TMP-S1 and CMP-S2), and the system with the additional H2 production processes of carbon (C) gasification and water–gas shift (WGS) reaction (TMPG-S3 and CMPG-S4). Based on the technical performance expressed by H2 and C production rate, the ratio of H2 combusted to supply the heat required and the ratio of reactants for the gasifier (C, Air, and water (H2O)), unit H2 production costs of USD 2.14, 3.66, 3.53, and 3.82 kgH2−1 from TMP-S1, CMP-S2, TMPG-S3, and CMPG-S4, respectively, were obtained at 40% H2 combusted and a reactants ratio for C-Air-H2O of 1:1:2. Moreover, trends of unit H2 production cost were obtained and key economic parameters of the MP reactor, reactant, and C selling price were represented by sensitivity analysis. In particular, economic competitiveness compared with commercialized H2 production methods was reported in the scenario analysis for the H2 production scale and C selling price.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4972
Author(s):  
Arnaldo Walter ◽  
Joaquim Seabra ◽  
Jansle Rocha ◽  
Marjorie Guarenghi ◽  
Nathália Vieira ◽  
...  

For international civil aviation to be able to significantly reduce its greenhouse gas (GHG) emissions, the use of Sustainable Aviation Fuels (SAF) needs to be made feasible. This paper presents the results of an assessment of the feasibility of production of SAF in Brazil, considering three certified routes, based on the dedicated production of eucalyptus, soy, sugarcane and corn. The results presented here refer to the production of biomass in selected locations, aiming to reduce GHG emissions and minimise production costs. Considering that the opportunity costs of feedstocks were not observed, the minimum selling price (MSP) of SAF in the reference case was estimated at 13.4 EUR·GJ−1 for the production based on soybean oil (HEFA-SPK route), 21.0 EUR·GJ−1 for the production based on ethanol from sugarcane and corn (ATJ-SPK) and 32.0 EUR·GJ−1 from eucalyptus (FT-SPK). These values refer to SAF’s nth industrial plant and biomass costs that are compatible with the current agricultural yields in Brazil but which are also the highest. The MSP results are relatively low compared to the estimates available in the literature, but they do not show the strict economic viability of SAFs in the short- to medium-term, mainly because of the low prices of fossil fuels.


2021 ◽  
Vol 4 (1) ◽  
pp. 60-71
Author(s):  
Donovan Guttieres ◽  
Anthony J Sinskey ◽  
Stacy L Springs

Abstract Background Neutralizing antibodies (nAbs) against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can play an important role in reducing impacts of the COVID-19 pandemic, complementing ongoing public health efforts such as diagnostics and vaccination. Rapidly designing, manufacturing and distributing nAbs requires significant planning across the product value chain and an understanding of the opportunities, challenges and risks throughout. Methods A systems framework comprised of four critical components is presented to aid in developing effective end-to-end nAbs strategies in the context of a pandemic: (1) product design and optimization, (2) epidemiology, (3) demand and (4) supply. Quantitative models are used to estimate product demand using available epidemiological data, simulate biomanufacturing operations from typical bioprocess parameters and calculate antibody production costs to meet clinical needs under various realistic scenarios. Results In a US-based case study during the 9-month period from March 15 to December 15, 2020, the projected number of SARS-CoV-2 infections was 15.73 million. The estimated product volume needed to meet therapeutic demand for the maximum number of clinically eligible patients ranged between 6.3 and 31.5 tons for 0.5 and 2.5 g dose sizes, respectively. The relative production scale and cost needed to meet demand are calculated for different centralized and distributed manufacturing scenarios. Conclusions Meeting demand for anti-SARS-CoV-2 nAbs requires significant manufacturing capacity and planning for appropriate administration in clinical settings. MIT Center for Biomedical Innovation’s data-driven tools presented can help inform time-critical decisions by providing insight into important operational and policy considerations for making nAbs broadly accessible, while considering time and resource constraints.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 254
Author(s):  
Liushan Jiang ◽  
Fanshan Zeng ◽  
Rong Zhong ◽  
Yu Xie ◽  
Jianli Wang ◽  
...  

With the rapid consumption of fossil fuels, along with the ever-increasing environmental pollution, it is becoming a top priority to explore efficient photocatalysts for the production of renewable hydrogen and degradation of pollutants. Here, we fabricated a composite of g-C3N4/TiO2 via an in situ growth method under the conditions of high-temperature calcination. In this method, TiO2 nanowires with a large specific surface area could provide enough space for loading more g-C3N4 nanoparticles to obtain C3N4/TiO2 composites. Of note, the g-C3N4/TiO2 composite could effectively photocatalyze both the degradation of several pollutants and production of hydrogen, both of which are essential for environmental governance. Combining multiple characterizations and experiments, we found that the heterojunction constructed by the TiO2 and g-C3N4 could increase the photocatalytic ability of materials by prompting the separation of photogenerated carriers. Furthermore, the photocatalytic mechanism of the g-C3N4/TiO2 composite was also clarified in detail.


2021 ◽  
Vol 414 ◽  
pp. 128730
Author(s):  
Clemens F. Patzschke ◽  
Brett Parkinson ◽  
Joshua J. Willis ◽  
Partha Nandi ◽  
Alyssa M. Love ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 462
Author(s):  
Houssame Boujjat ◽  
Sylvain Rodat ◽  
Stéphane Abanades

Solar biomass gasification is an attractive pathway to promote biomass valorization while chemically storing intermittent solar energy into solar fuels. The economic feasibility of a solar gasification process at a large scale for centralized H2 production was assessed, based on the discounted cash-flow rate of return method to calculate the minimum H2 production cost. H2 production costs from solar-only, hybrid and conventional autothermal biomass gasification were evaluated under various economic scenarios. Considering a biomass reference cost of 0.1 €/kg, and a land cost of 12.9 €/m2, H2 minimum price was estimated at 2.99 €/kgH2 and 2.48 €/kgH2 for the allothermal and hybrid processes, respectively, against 2.25 €/kgH2 in the conventional process. A sensitivity study showed that a 50% reduction in the heliostats and solar tower costs, combined with a lower land cost of below 0.5 €/m2, allowed reaching an area of competitiveness where the three processes meet. Furthermore, an increase in the biomass feedstock cost by a factor of 2 to 3 significantly undermined the profitability of the autothermal process, in favor of solar hybrid and solar-only gasification. A comparative study involving other solar and non-solar processes led to conclude on the profitability of fossil-based processes. However, reduced CO2 emissions from the solar process and the application of carbon credits are definitely in favor of solar gasification economics, which could become more competitive. The massive deployment of concentrated solar energy across the world in the coming years can significantly reduce the cost of the solar materials and components (heliostats), and thus further alleviate the financial cost of solar gasification.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4447
Author(s):  
Hokey Min ◽  
Yohannes Haile

With a growing demand for safe, clean, and affordable energy, countries across the world are now seeking to create and rapidly develop renewable energy (RE) businesses. The success of these businesses often hinges on their ability to translate RE into sustainable value for energy consumers and the multiple stakeholders in the energy industry. Such value includes low production costs due to an abundance of natural resources (e.g., wind, water, sunlight), and public health benefits from reduced environmental pollution. Despite the potential for value creation, many RE businesses have struggled to create affordable energy as abundant as that which is produced by traditional fossil fuels. The rationale being that traditional RE sources emanating from natural resources tend to rely on unpredictable weather conditions. Therefore, to help RE businesses deliver sustainable value, we should leverage disruptive innovation that is less dependent on natural resources. This paper is one of the first attempts to assess the impact of disruptive innovation on RE business performances based on the survey data obtained from multiple countries representing both emerging and developed economies.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 241
Author(s):  
Rafael G. Ferreira ◽  
Adriano R. Azzoni ◽  
Maria Helena Andrade Santana ◽  
Demetri Petrides

Hyaluronic acid (HA) is a polysaccharide of alternating d-glucuronic acid and N-acetyl-d-glucosamine residues present in the extracellular matrix of connective, epithelial, and nervous tissues. Due to its singular hydrating, rheological and adhesive properties, HA has found numerous cosmetic and medical applications. However, techno-economic analyses of high value-added bioproducts such as HA are scarce in the literature. Here, we present a techno-economic analysis of a process for producing HA using Streptococcus zooepidemicus, simulated in SuperPro Designer. In the baseline scenario, HA is produced by batch fermentation, reaching 2.5 g/L after 24 h. It is then centrifuged, diafiltered, treated with activated carbon and precipitated with isopropanol. The product is suitable for topical formulations and its production cost was estimated as 1115 $/kg. A similar scenario, based on fed-batch culture and assuming a titer of 5.0 g/L, led to a lower cost of 946 $/kg. Moreover, in two additional scenarios, 10% of the precipitated HA is diverted to the production of a highly pure and high-molecular weight HA, suitable for injectable applications. These scenarios resulted in higher capital and operating costs, but also in higher profits, because HA for injectable use has a higher selling price that more than compensates for its higher production costs.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1046
Author(s):  
Jenna Ruokonen ◽  
Harri Nieminen ◽  
Ahmed Rufai Dahiru ◽  
Arto Laari ◽  
Tuomas Koiranen ◽  
...  

The ambitious CO2 emission reduction targets for the transport sector set in the Paris Climate Agreement require low-carbon energy solutions that can be commissioned rapidly. The production of gasoline, kerosene, and diesel from renewable methanol using methanol-to-olefins (MTO) and Mobil’s Olefins to Gasoline and Distillate (MOGD) syntheses was investigated in this study via process simulation and economic analysis. The current work presents a process simulation model comprising liquid fuel production and heat integration. According to the economic analysis, the total cost of production was found to be 3409 €/tfuels (273 €/MWhLHV), corresponding to a renewable methanol price of 963 €/t (174 €/MWhLHV). The calculated fuel price is considerably higher than the current cost of fossil fuels and biofuel blending components. The price of renewable methanol, which is largely dictated by the cost of electrolytic hydrogen and renewable electricity, was found to be the most significant factor affecting the profitability of the MTO-MOGD plant. To reduce the price of renewable fuels and make them economically viable, it is recommended that the EU’s sustainable transport policies are enacted to allow flexible and practical solutions to reduce transport-related emissions within the member states.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3883
Author(s):  
Megan Roux ◽  
Cristiano Varrone

It is widely accepted that plastic waste is one of the most urgent environmental concerns the world is currently facing. The emergence of bio-based plastics provides an opportunity to reduce dependency on fossil fuels and transition to a more circular plastics economy. For polyethylene terephthalate (PET), one of the most prevalent plastics in packaging and textiles, two bio-based alternatives exist that are similar or superior in terms of material properties and recyclability. These are polyethylene furanoate (PEF) and polytrimethylene terephthalate (PTT). The overarching aim of this study was to examine the transition from fossil-based to renewable plastics, through the lens of PET upcycling into PEF and PTT. The process for the production of PEF and PTT from three waste feed streams was developed in the SuperPro Designer software and the economic viability assessed via a discounted cumulative cash flow (DCCF) analysis. A techno-economic analysis of the designed process revealed that the minimum selling price (MSP) of second generation-derived PEF and PTT is 3.13 USD/kg, and that utilities and the feedstock used for the production of 2,5-furandicarboxylic acid (FDCA) needed in PEF synthesis contributed the most to the process operating costs. The effect of recycling PEF and PTT through the process at three recycling rates (42%, 50% and 55%) was investigated and it was revealed that increased recycling could reduce the MSP of the 2G bio-plastics (by 48.5%) to 1.61 USD/kg. This demonstrates that the plastic biorefinery, together with increasing recycling rates, would have a beneficial effect on the economic viability of upcycled plastics.


Sign in / Sign up

Export Citation Format

Share Document