scholarly journals Analytical Method for Preliminary Seismic Design of Tunnels

2021 ◽  
Author(s):  
Kaveh Dehghanian

Buried structures are categorized based on their shape, size and location. These main categories are near surface structures (e.g., pipes and other facilities), large section structures (e.g., tunnels, subways, etc.), and vertical underground structures (e.g., shafts and ducts). Seismic assessments of these structures are important in areas close to severe seismic sources. Seismic design of tunnels requires calculation of the deformation in surrounding geological formations. The seismic hazard on a site is usually expressed as a function of amplitude parameters of free-field motion. Therefore, simplified relations between depth and parameters of ground motion are necessary for preliminary designs. The objective of this chapter is to study and review the main analytical seismic methods which are used to develop a simple relationship between maximum shear strain, maximum shear stress and other seismic parameters.

2005 ◽  
Vol 42 (2) ◽  
pp. 491-498
Author(s):  
Dae-Sang Kim ◽  
Kazuo Konagai

Earthquake observations at different sites within alluvial soil deposits have demonstrated that the motion of buried underground structures closely follows that of the surrounding soil. Therefore, it is usual in a seismic design process to apply free-field ground displacements through Winkler-type soil springs to an underground structure to evaluate stress patterns induced within its structural members. Using a simplified approach, this paper provides a clear understanding of resonant horizontal ground displacement of and strain in a surface soil deposit with a radical change of depth and of where they occur.Key words: simple approach, seismic design, earthquake, resonance, underground structures.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Kunpeng Xu ◽  
Liping Jing ◽  
Xinjun Cheng ◽  
Haian Liang ◽  
Jia Bin

Subgrade reaction coefficient is commonly considered as the primary challenge in simplified seismic design of underground structures. Carrying out test is the most reliable way to acquire this intrinsic soil property. Owing to the limitations of experimental cost, time consumption, soil deformation mode, size effect, and confined condition, the existing testing methods cannot satisfy the requirements of high-precision subgrade reaction coefficient in seismic design process of underground structures. Accordingly, the present study makes an attempt to provide new laboratory testing methods considering realistic seismic response of soil, based on shaking table test and quasistatic test. Conventional shaking table test for sandy free-field was performed, with the results indicating that the equivalent normal subgrade reaction coefficients derived from the experimental hysteretic curves are reasonable and verifying the deformation mode under seismic excitation. A novel multifunctional quasistatic pushover device was invented, which can simulate the most unfavorable deformation mode of soil during the earthquake. In addition, the first successful application of an innovative quasistatic testing method in evaluating subgrade reaction coefficient was reported. The findings of this study provide preliminary detailed insights into subgrade reaction coefficient evaluation which can benefit seismic design of underground structures.


2017 ◽  
Vol 26 (1) ◽  
pp. 53-68
Author(s):  
Mark Byron

Scholarly research over the last twenty years has marked a profound shift in the understanding of Beckett's sources, his methods of composition, and his attitudes towards citation and allusion in manuscript documents and published texts. Such landmark studies as James Knowlson's biography, Damned to Fame (1996), and John Pilling's edition of the Dream Notebook (1999), and the availability of primary documents such as Beckett's reading notes at Reading and Trinity libraries, opened the way for a generation of work rethinking Beckett's textual habitus. Given this profound reappraisal of Beckett's material processes of composition, this paper seeks to show that Beckett's late prose work, Worstward Ho, represents a profound mediation on writing, self-citation, and habits of allusion to the literary canon. In its epic gestures, it reorients the heavenly aspiration of Dante's Commedia earthwards, invoking instead the language of agriculture, geology and masonry in the process of creating and decreating its imaginative space. Beckett's earthy epic invokes and erodes the first principles of narrative by way of philology as well as by means of deft reference to literary texts and images preoccupied with land, farming, and geological formations. This process is described in the word corrasion, a geological term referring to the erosion of rock by various forms of water, ice, snow and moraine. Textual excursions into philology in Worstward Ho also unearth the strata comprising Beckett's corpus (in particular Imagination Dead Imagine, The Lost Ones, and Ill Seen Ill Said), as well as the rock or canon upon which his own literary production is built. A close reading of Worstward Ho turns up a number of shrewd allusions to the King James Bible and Thomas Browne, as one might expect, but also perhaps surprisingly sustained affinities with the literary sensibilities of Alexander Pope and the poetry of S. T. Coleridge. The more one digs, the more Beckett's ‘little epic’ seems to become one of earthworks, bits of pipe, and masonry, a site and record of literary sedimentation.


2016 ◽  
Vol 10 (4) ◽  
pp. 1721-1737 ◽  
Author(s):  
Wenli Wang ◽  
Annette Rinke ◽  
John C. Moore ◽  
Duoying Ji ◽  
Xuefeng Cui ◽  
...  

Abstract. A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C−1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.


1979 ◽  
Vol 16 (1) ◽  
pp. 108-120 ◽  
Author(s):  
K. Y. Lo ◽  
M. Hori

Uniaxial compression tests were performed on sedimentary rocks of five different geological formations at various sites in southern Ontario. The deformation behaviour is analysed in terms of the cross-anisotropic elastic theory and typical sets of five independent parameters for each rock unit have been obtained. It is shown that some of the rock types are significantly anisotropic both in deformation and strength behaviour. The practical relevance of the results in the analysis and design of underground structures in these rocks is discussed.


2013 ◽  
Vol 791-793 ◽  
pp. 362-365
Author(s):  
Li Yang ◽  
Ju Li Li ◽  
Jing Guo Ge ◽  
Meng Li ◽  
Nan Ji

Thermal cycling of a unit Sn0.7Cu solder was studied based on the steady-state creep constitutive equation and Matlab software. The results show that there is a steady-state cycle for the thermal cycling of unit Sn0.7Cu eutectic solder. In steady-state thermal cycling, the shear stress is increased with the increase of temperature. There is a stage of stress relaxation during high temperature. A liner relationship between maximum shear stress and maximum shear strain is observed during thermal cycling. The metastable cycle number is declined greatly with the increase of maximum shear strain.


2001 ◽  
Vol 16 (4) ◽  
pp. 247-293 ◽  
Author(s):  
Youssef M.A. Hashash ◽  
Jeffrey J. Hook ◽  
Birger Schmidt ◽  
John I-Chiang Yao

A good knowledge about a site including its subsurface conditions is very important in its safe and economical development. It is therefore an essential preliminary to the construction of any civil engineering work. This chapter outlines the objectives of site characterization and the general objectives of geotechnical investigation. It discusses the phases of field investigation and the stages of a full exploratory program including methods of sample recovery and field tests and sampling methods. Geophysical techniques can contribute very greatly to the process of ground investigation by allowing an assessment, in qualitative terms, of the lateral variability and vertical profiling of the near-surface materials beneath a site. Some of these geophysical techniques are discussed in the chapter. Laboratory examination/verification and testing should be made of representative portions of the samples to establish appropriate soil parameters. Some soil parameters may be estimated by correlations. The results of the subsurface investigation and related testing, together with interpretations, discussions, and foundation recommendations, are usually presented in the form of a detailed soil report.


2020 ◽  
Vol 14 (03) ◽  
pp. 2050014
Author(s):  
Arash Rostami ◽  
Abdolreza S. Moghadam ◽  
Mahmood Hosseini ◽  
Nima Asghari

The seismic design of the structures is carried out by technical regulations and codes in free-field conditions (regardless of underground cavities). With the availability of tunnels and the complex interaction between the tunnel and the aboveground structures, which may be contemplated wrongly, it could be dangerous for over ground buildings and structures. Consequently, the examination of the underground tunnels and their impact on the land surface and adjacent buildings seismic response seems to be significant. The present research focuses on formation of the plastic hinges in steel structures due to underground cavities and the soil–tunnel–structure interaction of underground structures. First, an existing model was verified by finite element method and the results were compared with a sample specimen. Thus, several effective parameters were considered and studied such as soil type, multi-story structures (4, 8 and 12 stories) and dynamic load type. Then the models were evaluated under real earthquake records. As a result, the seismic response of the structures and plastic conditions of plastic hinge conditions were obtained. The results indicate that the underground cavities have affected the formation of plastic hinges in the structure. They increased the input energy to the structure and had an impact on the total behavior of the structures. Also, the high-rise structures were much more vulnerable to underground tunnels. Therefore, the structures which are located above the underground cavities should be retrofitted and rehabilitated.


Sign in / Sign up

Export Citation Format

Share Document