human pterygium fibroblasts
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 282
Author(s):  
Gianmarco Stati ◽  
Francesco Rossi ◽  
Thithawat Trakoolwilaiwan ◽  
Le Duc Tung ◽  
Stefanos Mourdikoudis ◽  
...  

Pterygium is a progressive disease of the human eye arising from sub-conjunctival tissue and extending onto the cornea. Due to its invasive growth, pterygium can reach the pupil compromising visual function. Currently available medical treatments have limited success in suppressing efficiently the disease. Previous studies have demonstrated that curcumin, polyphenol isolated from the rhizome of Curcuma longa, induces apoptosis of human pterygium fibroblasts in a dose- and time-dependent manner showing promising activity in the treatment of this ophthalmic disease. However, this molecule is not very soluble in water in either neutral or acidic pH and is only slightly more soluble in alkaline conditions, while its dissolving in organic solvents drastically reduces its potential use for biomedical applications. A nanoformulation of curcumin stabilized silver nanoparticles (Cur-AgNPs) seems an effective strategy to increase the bioavailability of curcumin without inducing toxic effects. In fact, silver nitrates have been used safely for the treatment of many ophthalmic conditions and diseases for a long time and the concentration of AgNPs in this formulation is quite low. The synthesis of this new compound was achieved through a modified Bettini’s method adapted to improve the quality of the product intended for human use. Indeed, the pH of the reaction was changed to 9, the temperature of the reaction was increased from 90 °C to 100 °C and after the synthesis the Cur-AgNPs were dispersed in Borax buffer using a dialysis step to improve the biocompatibility of the formulation. This new compound will be able to deliver both components (curcumin and silver) at the same time to the affected tissue, representing an alternative and a more sophisticated strategy for the treatment of human pterygium. Further in vitro and in vivo assays will be required to validate this formulation.


2021 ◽  
Vol 713 ◽  
pp. 109049
Author(s):  
Jianwu Fan ◽  
Xin Zhang ◽  
Yaping Jiang ◽  
Li Chen ◽  
Minjie Sheng ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Paloma López-Montemayor ◽  
Judith Zavala ◽  
María Dolores Montalvo-Parra ◽  
Guillermo Isaac Guerrero-Ramírez ◽  
Karla Mayolo-Deloisa ◽  
...  

Background. Sedum dendroideum has antioxidant effects that are beneficial for different diseases. We aimed to analyze the antiproliferative activity of S. dendroideum in human pterygium fibroblasts (HPFs). Methods. HPFs were treated for 24 h with 0–1000 μg/mL of S. dendroideum lyophilized to analyze its effect on cell viability using the CellTiter assay. RNA from HPF treated with 250 μg/mL of S. dendroideum lyophilized was isolated, and the expression of VEGF and CTGF genes was evaluated by qPCR. A dermal fibroblast cell line (HDFa) was used as a healthy control. The total phenolic content, antioxidant activity, and chemical profile of S. dendroideum lyophilized were determined. Results. Viability of HPF decreased after 24 h treatment of S. dendroideum in a dose-dependent manner. The expression of VEGF and CTGF significantly decreased ( P < 0.01 ) in HPF treated with 250 μg/mL of S. dendroideum when compared with untreated HPF. The total phenolic concentration in the S. dendroideum lyophilized was 33.67 mg gallic acid equivalents (GAE)/g. Antioxidant activity was 384.49 mM Trolox equivalents/mL. The main phenolic compounds identified by HPLC analysis were the kaempferol-3-O-glycoside, kaempferol-3-O-rhamnoside, kaempferol-3-O-neohesperidoside-7-O-α-rhamnopyranoside, and kaempferol-3-O-glycoside-7-O-rhamnoside. Conclusions. S. dendroideum decreases the proliferation of HPF and the expression of VEGF and CTGF. The phenolic compound concentration, antioxidant activity, and phytochemical profile may play a role in these effects.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Naiyu Sun ◽  
Hong Zhang

Pterygium is a common ocular disease characterized by proliferating fibrovascular tissue. Pyroptosis, a recently discovered programed cell death, is known to be associated with oxidative stress, one of the main causes of pterygia. Here, we aimed to study the role of pyroptosis in pterygium pathogenesis. The expression of nod-like receptor pyrins-3 (NLRP3), caspase-1, IL-18, and IL-1β was analyzed in 60 human pterygium tissues and 60 human conjunctival epithelium tissues using real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot analysis. Human conjunctival epithelial cells (HConECs) and human pterygium fibroblasts (HPFs) were primary cultured and the level of pyroptosis-associated factors was detected. Both cells were treated with H2O2, and cell lysis was detected by lactate dehydrogenase (LDH) release assay, the expression of the factors by qRT-PCR, Western blot analysis, and immunostaining. The downstream factors IL-18 and IL-1β were measured after inhibition of caspase-1 to confirm the caspase-1-dependent pyroptosis. α-SMA and E-cadherin were detected as indicators of pyroptosis-induced myofibroblast activation in HPFs. We discovered that the expression of the factors was significantly increased in pterygium and that caspase-1-dependent pyroptosis presents in both H2O2-treated HPFs and HConECs during which the expression of these factors was significantly elevated and the elevation of downstream factors IL-18 and IL-1β was restrained after caspase-1 inhibition. α-SMA increase and E-cadherin down-regulation were detected in H2O2-treated HPFs and the changes were reversed by caspase-1 inhibition. Pyroptosis displays a role in the pathological process of pterygium formation and progression. Pyroptosis appears to be an intriguing target to prevent pterygium pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document