scholarly journals Phytochemical Profile and Antioxidant and Antiproliferative Activity of Sedum dendroideum on Pterygium Fibroblasts

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Paloma López-Montemayor ◽  
Judith Zavala ◽  
María Dolores Montalvo-Parra ◽  
Guillermo Isaac Guerrero-Ramírez ◽  
Karla Mayolo-Deloisa ◽  
...  

Background. Sedum dendroideum has antioxidant effects that are beneficial for different diseases. We aimed to analyze the antiproliferative activity of S. dendroideum in human pterygium fibroblasts (HPFs). Methods. HPFs were treated for 24 h with 0–1000 μg/mL of S. dendroideum lyophilized to analyze its effect on cell viability using the CellTiter assay. RNA from HPF treated with 250 μg/mL of S. dendroideum lyophilized was isolated, and the expression of VEGF and CTGF genes was evaluated by qPCR. A dermal fibroblast cell line (HDFa) was used as a healthy control. The total phenolic content, antioxidant activity, and chemical profile of S. dendroideum lyophilized were determined. Results. Viability of HPF decreased after 24 h treatment of S. dendroideum in a dose-dependent manner. The expression of VEGF and CTGF significantly decreased ( P < 0.01 ) in HPF treated with 250 μg/mL of S. dendroideum when compared with untreated HPF. The total phenolic concentration in the S. dendroideum lyophilized was 33.67 mg gallic acid equivalents (GAE)/g. Antioxidant activity was 384.49 mM Trolox equivalents/mL. The main phenolic compounds identified by HPLC analysis were the kaempferol-3-O-glycoside, kaempferol-3-O-rhamnoside, kaempferol-3-O-neohesperidoside-7-O-α-rhamnopyranoside, and kaempferol-3-O-glycoside-7-O-rhamnoside. Conclusions. S. dendroideum decreases the proliferation of HPF and the expression of VEGF and CTGF. The phenolic compound concentration, antioxidant activity, and phytochemical profile may play a role in these effects.

Author(s):  
Hadi Shariati ◽  
Mohammad Hassanpour ◽  
Gholamreza Sharifzadeh ◽  
Asghar Zarban ◽  
Saeed Samarghandian ◽  
...  

Objective: The present study has been carried out to evaluate the diuretic and antioxidant properties of pine herb in an animal model. Materials and Methods: 45 adult male rats were randomly divided into nine groups including: groups I (the negative control), groups II (positive control, furosemide 10 mg/kg), groups III to VIII (treatment groups received 100, 200, 400 mg/kg of the aqueous extracts of bark and fruit) and group IX received the combination of aqueous extract of bark (100 mg/kg) and the fruit (100 mg/kg). The urine output, glomerular filtration rate (GFR), electrolytes, urea, and creatinine levels were evaluated . Furthermore, the phenolic content and antioxidant activity of both extracts were also assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and Folin–Ciocalteu methods. Results: The aqueous extracts of the pine bark and fruit increased the urinary output in a dose-dependent manner. The combination of the two extracts compared to the other extracts alone significantly increased the serum potassium level. This study also showed each extract increase creatinine clearance in a dose-dependent manner (p<0.01 and p<0.05). The increase of GFR in the combination group was not significant. The current data showed a significant increase in the total phenolic content in pine bark extract in compared with the fruit extract. Conclusion: The pine bark and fruit can be useful in the prevention and treatment of kidney stones due to the high antioxidant activity.


2008 ◽  
Vol 27 (4) ◽  
pp. 341-346 ◽  
Author(s):  
EA Soria ◽  
ME Goleniowski ◽  
JJ Cantero ◽  
GA Bongiovanni

Chronic toxicity of arsenic resulting from drinking water is a health problem encountered in humans, especially in South America and Asia, where a correlation between oxidative stress, tumor promotion, and arsenic exposure has been observed. Differential solvent extraction (petroleum ether (PE); dichloromethane (DCM); methanol (OL) and water (W)) was performed to compare the protective (antioxidant) activity of five Argentinian medicinal plants on arsenite-induced oxidative stress in Vero cells, assayed by hydroperoxide measurement. The results were analyzed using ANOVA followed by the LSD Fisher test. The data showed that arsenite was a pro-oxidant agent which acts in a time–dose-dependent manner. Extracts from Eupatorium buniifolium (PE), Lantana grisebachii (PE, W), Mandevilla pentlandiana (PE, W), and Sebastiania commersoniana (DCM, OL, W) prevented the formation of both aqueous and lipid hydroperoxides, but Heterothalamus alienus only impeded lipid ones. Therefore, antioxidant extracts are potentially beneficial and may have a protective activity against arsenite-induced renal injury. Among these, the aqueous extract of L. grisebachii may represent the most suitable preparation for humans since the traditional usage of this plant in popular medicine is through consumption of tea.


2009 ◽  
Vol 15 (5) ◽  
pp. 435-444 ◽  
Author(s):  
Zuofa Zhang ◽  
Jie Jin ◽  
Liangen Shi

The antioxidant properties and total phenolic contents of four fractions of ethanolic extract from Ramulus mori were examined. Various experimental models including superoxide radical, hydroxyl radical, 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) scavenging activity, metal chelating activity, and reducing power were used for characterization of their antioxidant activity. The four fractions showed various degrees of efficacy in each assay in a dose-dependent manner. The third fraction with the highest amount of total phenolics was the most potent antioxidant in all assays used. In addition, the most powerful compound (oxyresveratrol) was isolated and identified followed by on-line HPLC method and characterized by different spectral analysis. Oxyresveratrol exhibited impressive antioxidant activities in scavenging the superoxide radical, hydroxide radical, and DPPH. On the basis of the results obtained, Ramulus mori may serve as a potential source of natural antioxidant due to its significant antioxidant activity and oxyresveratrol may be the most powerful antioxidant in ethanolic extracts of Ramulus mori.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
P. Suganya Devi ◽  
M. Saravana Kumar ◽  
S. Mohan Das

There is increasing interest in natural food colorants like carotenoids and anthocyanins with functional properties. Red sorghum bran is known as a rich source for anthocyanins. The anthocyanin contents extracted from red sorghum bran were evaluated by biochemical analysis. Among the three solvent system used, the acidified methanol extract showed a highest anthocyanin content (4.7 mg/g of sorghum bran) followed by methanol (1.95 mg/g) and acetone (1 mg/g). Similarly, the highest total flavonoids (143 mg/g) and total phenolic contents (0.93 mg/g) were obtained in acidified methanol extracts than methanol and acetone extracts. To study the health benefits of anthocyanin from red sorghum bran, the total antioxidant activity was evaluated by biochemical and molecular methods. The highest antioxidant activity was observed in acidified methanol extracts of anthocyanin in dose-dependent manner. The antioxidant activity of the red sorghum bran was directly related to the total anthocyanin found in red sorghum bran.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Yin Lu ◽  
Xiangtao Du ◽  
Lidan Lai ◽  
Hao Jin

The antioxidant potential ofActinidia macrospermaC. F. Liang (Actinidiaceae) was investigated in vitro for total phenolic content, along with total antioxidant activity (TAA), 1,1-diphenyl 2-picryl hydrazyl (DPPH), and lipid peroxidation (LP). The results indicated that different polarity extracts ofA. macrospermaexhibit different biological activities, which depends mainly on the presence of phenolic compounds. The antioxidant activity was in the following decreasing order: MeOH extract > EtOAc extract > aqueous extract > CHCl3extract > Hexane extract. Moreover, the cytotoxic activity of this plant by MTT dye assay using SMMC-7721 has been determined also. The hexane, EtOAc, and CHCl3extracts showed cytotoxicity in a dose-dependent manner. Methanol and aqueous extracts, however, showed weak activities in this test. And a very significant cytotoxic activity, not significantly different from the positive control of quercetin, was observed in CHCl3extract.


2021 ◽  
Author(s):  
Johnmark Ndinawe ◽  
Hellen W. Kinyi

Abstract ObjectiveAmaranths leaves are rich in ascorbic acid and polyphenol compounds which have antioxidant activity. The aim of this study was to evaluate their in vivo antioxidant activity. The effect of consumption of Amaranth leaf extract on in vivo antioxidant activity, catalase enzyme activity and H2O2 induced oxidative stress in Drosophila melanogaster flies was assessed.ResultsConsumption of Amaranth leaf extract was associated with increased survival on exposure to H202 in a dose dependent manner in Drosophila melanogaster flies.


2021 ◽  
Vol 913 (1) ◽  
pp. 012076
Author(s):  
Y D Muksin ◽  
Mahrus ◽  
S Bahri

Abstract Red dragon fruit or Hylocereuspolyrhizus is one of the most popular fruits in Indonesia. Besides being consumed directly, H. Polyrhizus processed into various forms of processed food products such as jams, syrups, sweets, tea, and functional drinks. Unfortunately, massive quantities of solid waste, including H. polyrhizuspeel produced every year, continues to increase from year to year. Their disposal led to severe environmental issues. Whereas, H. polyrhizuspeels are abundant in beneficial secondary metabolites compoundespecially flavonoid and phenolic. The presence of flavonoid and phenolic content provides many benefits in the development of natural medicines, especially as antioxidants. However, the research related to exploring antioxidant potentials of H. polyrhizuspeel is still very limited. This study aimed to explore the phytochemical of H. polyrhizuspeel and their role as a natural-antioxidant agent. H. polyrhizuspeels were extracted through a maceration method using 96% of ethanol as their solvent. A total phenolic essay is determined by the method of Folin-Ciocalteu reagent using gallic acid as a reference. AlCl3 reagent is used to analyse the flavonoid content by comparing with quercetin. Antioxidant activity was done by DPPH and ABTS free radical scavenging methods. The total phenolic and flavonoid content of H. polyrhizuspeel extract (HPPE) at 107.35 ± 8.02 mg GAE/g and 108.82 ± 12.69 mg QE/g respectively. Furthermore, antioxidant activity of HPPE showed IC50 value at 136.20 ± 0.70 Lig/ml Lig/ml with DPPH methods and 390.70 ± 1.25 Lig/ml ug/ml with ABTS methods. Based on this recent study, HPPE has a moderate antioxidant activity by reducing free radicals in dose dependent manner.


2020 ◽  
Author(s):  
Yu-Guo Yuan ◽  
Myeong-Don Joo ◽  
Jia-Lin Wang ◽  
Ayman Mesalam ◽  
Abu Musa Md Talimur R ◽  
...  

Abstract Background: Graphene oxide (GO) has drawn much attention as excellent platform to which silver nanoparticles (AgNPs) can be anchored for the production of biomedical nanocomposites. Yet, the potential toxicity of GO-AgNPs nanocomposites to animal and human is complex to evaluate and remains largely unknown. Results: Our data indicated that GO-AgNPs caused cytotoxicity in dose-dependent manner. GO-AgNPs induced significant cytotoxicity by the loss of cell viability, production of reactive oxygen species (ROS), cell cycle arrest, increasing leakage of lactate dehydrogenase (LDH) and level of Malondialdehyde (MDA), increasing expression of pro-apoptotic genes and decreasing expression of anti-apoptotic genes. Conclusions: Taken together, our study demonstrated that GO-AgNPs potentially induce oxidative damage to DNA, which result in toxicity and cell apoptosis in caprine fetal fibroblast cell due to an increased generation of ROS. It strongly suggests that applications of GO-AgNPs nanocomposite in animal must be further evaluated.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 247 ◽  
Author(s):  
Teerapat Rodboon ◽  
Seiji Okada ◽  
Prasit Suwannalert

The anti-melanogenic bioactivities of phytophenolic compounds have been well recognized. Riceberry rice contains a rich source of phenolic compounds that act as melanin inhibitors through their antioxidant and anti-tyrosinase properties. Germination has been shown to be an effective process to improve targeted phenolic compounds. In this study, germinated riceberry rice extract was tested for antioxidant activity. Total phenolic content was determined while the tyrosinase inhibitory effect was screened by the in vitro mushroom tyrosinase assay. Cytotoxicity of germinated riceberry rice extract was investigated in B16 cells before evaluating its activities on cellular tyrosinase, melanogenesis, melanin excretion, morphological appearance, and cellular oxidants. Germinated riceberry rice extract showed increased potency of antioxidants and was also twice as effective for mushroom tyrosinase inhibition when compared with ungerminated riceberry rice extract. In B16 cells, the extract inhibited cellular tyrosinase, melanogenesis, and cellular oxidants in a dose-dependent manner when compared with untreated cells. Germinated riceberry rice extract also displayed an effect on B16 cells morphology by reducing the number of melanin- containing cells and their dendriticity. Additionally, the germination of riceberry rice dominantly enhanced two phenolic acids, protocatechuic acid and vanillic acid, which have the potential for antioxidant-associated hyperpigmentation control. Thus, the restricted germination of riceberry rice tended to promote protocatechuic acid and vanillic acid, which dominantly displayed antioxidants and tyrosinase-related melanogenic inhibition.


2006 ◽  
Vol 291 (3) ◽  
pp. C546-C554 ◽  
Author(s):  
Jian Ping Meng ◽  
Susan Ceryak ◽  
Zaheer Aratsu ◽  
Loren Jones ◽  
Lauren Epstein ◽  
...  

We have previously reported that the bile acids chenodeoxycholate (CDCA) and ursodeoxycholate (UDCA) decreased PGE1-induced cAMP production in a time- and dose-dependent manner not only in hepatocytes but also in nonhepatic cells, including dermal fibroblasts. In the present study, we investigated the physiological relevance of this cAMP modulatory action of bile acids. PGE1 induced cAMP production in a time- and dose-dependent manner. Moreover, PGE1 (1 μM), forskolin (1–10 μM), and the membrane-permeable cAMP analog CPT-cAMP (0.1–10 μM) decreased dermal fibroblast proliferation in a dose-dependent manner with a maximum inhibition of ∼80%. CDCA alone had no significant effect on cell proliferation at a concentration up to 25 μM. However, CDCA significantly reduced PGE1-induced cAMP production by 80–90% with an EC50 of ∼20 μM. Furthermore, at concentrations ≤25 μM, CDCA significantly attenuated the PGE-1-induced decreased cell proliferation. However, at concentrations of 50 μM and above, while still able to almost completely inhibit PGE-1-induced cAMP production, CDCA, at least in part through an increased cyclooxygenase-2 (COX-2) expression level and PGE2 synthesis, produced a direct and significant decrease in cell proliferation. Indeed, the CDCA effect was partially blocked by ∼50–70% by both indomethacin and dexamethasone. In addition, overexpression of COX-2 cDNA wild type resulted in an increased efficacy of CDCA to block cell proliferation. The effects of CDCA on both cAMP production and cell proliferation were similar to those of UDCA and under the same conditions cholate had no effect. Results of the present study underline pathophysiological consequences of cholestatic hepatobiliary disorders, in which cells outside of the enterohepatic circulation can be exposed to elevated bile acid concentrations. Under these conditions, low bile acid concentrations can attenuate the negative hormonal control on cell proliferation, resulting in the stimulation of cell growth, while at high concentrations these bile acids provide for a profound and prolonged inhibition of cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document