ovarian carcinogenesis
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 25)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 22 (11) ◽  
pp. 3525-3531
Author(s):  
Dzul Ikram ◽  
Rina Masadah ◽  
Berti Nelwan ◽  
Andi Zainuddin ◽  
Mahmud Ghaznawie ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Miaomiao Ye ◽  
Yibin Lin ◽  
Shuya Pan ◽  
Zhi-wei Wang ◽  
Xueqiong Zhu

Ovarian cancer ranks as the fifth most common cause of cancer-related death in females. The molecular mechanisms of ovarian carcinogenesis need to be explored in order to identify effective clinical therapies for ovarian cancer. Recently, multi-omics approaches have been applied to determine the mechanisms of ovarian oncogenesis at genomics (DNA), transcriptomics (RNA), proteomics (proteins), and metabolomics (metabolites) levels. Multi-omics approaches can identify some diagnostic and prognostic biomarkers and therapeutic targets for ovarian cancer, and these molecular signatures are beneficial for clarifying the development and progression of ovarian cancer. Moreover, the discovery of molecular signatures and targeted therapy strategies could noticeably improve the prognosis of ovarian cancer patients.


2021 ◽  
pp. 1-16
Author(s):  
Luděk Záveský ◽  
Eva Jandáková ◽  
Vít Weinberger ◽  
Veronika Hanzíková ◽  
Ondřej Slanař ◽  
...  

Ovarian cancer comprises the most lethal gynecologic malignancy and is accompanied by the high potential for the incidence of metastasis, recurrence and chemotherapy resistance, often associated with a formation of ascitic fluid. The differentially expressed ascites-derived microRNAs may be linked to ovarian carcinogenesis. The article focuses on a number of miRNAs that share a common expression pattern as determined by independent studies using ascites samples and with regard to their functions and outcomes in experimental and clinical investigations. Let-7b and miR-143 have featured as tumor suppressors in ovarian cancer, which is in line with data on other types of cancer. Although two miRNAs, i.e. miR-26a-5p and miR-145-5p, act principally as tumor suppressor miRNAs, they occasionally exhibit oncogenic roles. The performance of miR-95-3p, upregulated in ascites, is open to debate given the current lack of supportive data on ovarian cancer; however, data on other cancers indicates its probable oncogenic role. Different findings have been reported for miR-182-5p and miR-200c-3p; in addition to their presumed oncogenic roles, contrasting findings have indicated their ambivalent functions. Further research is required for the identification and evaluation of the potential of specific miRNAs in the diagnosis, prediction, treatment and outcomes of ovarian cancer patients.


2021 ◽  
Vol 22 (11) ◽  
pp. 6082
Author(s):  
Ludmila Lozneanu ◽  
Raluca Anca Balan ◽  
Ioana Păvăleanu ◽  
Simona Eliza Giuşcă ◽  
Irina-Draga Căruntu ◽  
...  

BMI-1 is a key component of stem cells, which are essential for normal organ development and cell phenotype maintenance. BMI-1 expression is deregulated in cancer, resulting in the alteration of chromatin and gene transcription repression. The cellular signaling pathway that governs BMI-1 action in the ovarian carcinogenesis sequences is incompletely deciphered. In this study, we set out to analyze the immunohistochemical (IHC) BMI-1 expression in two different groups: endometriosis-related ovarian carcinoma (EOC) and non-endometriotic ovarian carcinoma (NEOC), aiming to identify the differences in its tissue profile. Methods: BMI-1 IHC expression has been individually quantified in epithelial and in stromal components by using adapted scores systems. Statistical analysis was performed to analyze the relationship between BMI-1 epithelial and stromal profile in each group and between groups and its correlation with classical clinicopathological characteristics. Results: BMI-1 expression in epithelial tumor cells was mostly low or negative in the EOC group, and predominantly positive in the NEOC group. Moreover, the stromal BMI-1 expression was variable in the EOC group, whereas in the NEOC group, stromal BMI-1 expression was mainly strong. We noted statistically significant differences between the epithelial and stromal BMI-1 profiles in each group and between the two ovarian carcinoma (OC) groups. Conclusions: Our study provides solid evidence for a different BMI-1 expression in EOC and NEOC, corresponding to the differences in their etiopathogeny. The reported differences in the BMI-1 expression of EOC and NEOC need to be further validated in a larger and homogenous cohort of study.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1925
Author(s):  
Jose A. Colina ◽  
Katherine E. Zink ◽  
Kanella Eliadis ◽  
Reza Salehi ◽  
Emma S. Gargus ◽  
...  

The fallopian tube epithelium is the site of origin for a majority of high grade serous ovarian carcinomas (HGSOC). The chemical communication between the fallopian tube and the ovary in the development of HGSOC from the fallopian tube is of interest since the fimbriated ends in proximity of the ovary harbor serous tubal intraepithelial carcinoma (STICs). Epidemiological data indicates that androgens play a role in ovarian carcinogenesis; however, the oncogenic impact of androgen exposure on the fallopian tube, or tubal neoplastic precursor lesions, has yet to be explored. In this report, imaging mass spectrometry identified that testosterone is produced by the ovary when exposed to tumorigenic fallopian tube derived PTEN deficient cells. Androgen exposure increased cellular viability, proliferation, and invasion of murine cell models of healthy fallopian tube epithelium and PAX2 deficient models of the preneoplastic secretory cell outgrowths (SCOUTs). Proliferation and invasion induced by androgen was reversed by co-treatment with androgen receptor (AR) antagonist, bicalutamide. Furthermore, ablation of phosphorylated ERK reversed proliferation, but not invasion. Investigation of two hyperandrogenic rodent models of polycystic ovarian syndrome revealed that peripheral administration of androgens does not induce fallopian proliferation in vivo. These data suggest that tumorigenic lesions in the fallopian tube may induce an androgenic microenvironment proximal to the ovary, which may in turn promote proliferation of the fallopian tube epithelium and preneoplastic lesions.


Aging ◽  
2020 ◽  
Vol 12 (21) ◽  
pp. 21129-21146
Author(s):  
Juan Yang ◽  
Wei-Gang Wang ◽  
Ke-Qiang Zhang

Sign in / Sign up

Export Citation Format

Share Document