mucor piriformis
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 1)

2020 ◽  
Vol 85 (2) ◽  
pp. 203-214
Author(s):  
Muhammad Iqbal ◽  
Saqib Ali ◽  
Muhammad Tahir ◽  
Muhammad Haleem ◽  
Hussain Gulab ◽  
...  

A rarely found polymeric complex of copper(II) was obtained in the reaction of 2-(4-methylphenyl)acetate and copper sulfate and crystallized in quantitative yield. The complex was characterized using FT-IR, electron spin resonance, absorption spectroscopy, electrochemistry and powder and single crystal XRD studies. The structure was found to consist of interconnected paddlewheel units without an intervening ligand resulting in a stepped polymeric arrangement of the structure. The purity of the sample was judged from powder XRD data while ESR spectroscopy indicated a weak signal between 3000 and 4000 G values, indicating the presence of Cu(II) in the complex. Electrochemistry revealed an irreversible, predominantly diffusion controlled CuIICuII/CuIICuI process with a D0 value calculated to be 3.032?10-8 cm2 s-1. The complex was screened for its DNA-binding ability through cyclic voltammetry, absorption and florescence spectroscopy and viscometry; the former two yielding Kb values of 3.34?103 and 6.90?103 M-1, respectively. The complex exhibited significant activity against fungal strain Mucor piriformis, moderate activity against Aspergillus niger and slight activity against Helminthosporium solani. These preliminary findings revealed the excellent biological potential of the synthesized complex.


Author(s):  
Oluwatayo Benjamin Ajayi-Moses ◽  
Clement Olusola Ogidi ◽  
Bamidele Juliet Akinyele

Abstract Background This study evaluated the antimicrobial potentials of Citrus essential oils (CEOs) against spoilage microorganisms isolated from selected fruits. The fruits were randomly purchased from different markets in Akure, Nigeria. Methods The microorganisms were isolated and identified using molecular tools. In vitro antimicrobial efficacies of CEOs and their synergistic potentials were tested against spoilage microorganisms using agar well diffusion. The bioactive compounds in CEOs were identified using gas chromatography–mass spectrometry (GC–MS). Results The highest bacterial count (5.84 × 105 cfu/g) was recorded in tomatoes, while African star apple had the highest fungal count of 3.04 × 105 sfu/g. Microorganisms isolated from fruits were Bacillus spp., Micrococcus luteus, Serratia marcescens, Aspergillus spp., Mucor piriformis, Fusarium oxysporum, Penicillium spp., Rhizopus spp., Alternaria alternata and others. Phytochemicals in the CEOs were anthraquinones, cardiac glycosides, tannins, alkaloids, terpenoids, saponins, steroids, flavonoids and phenol. The diameter zones of inhibition displayed by CEOs against tested microorganisms at 100 mg/ml ranged from 3.3 mm to 26.8 mm with B. muralis being the most susceptible bacteria. The minimum inhibitory concentration (MIC) against all the tested isolates ranged from 12.5 to 100 mg/ml, while the minimum bactericidal and fungicidal concentrations ranged from 25 to ≥ 100 mg/ml. The synergism between lime and lemon at ratio 1:1 had better antimicrobial activity than each essential oil when used singly. GC–MS revealed the presence of limonene, beta-pinene, alpha-phellandrene, terpinen-4-ol, alpha-terpineol and geraniol in EOs of lime and lemon. Conclusion The inhibitory potential of CEOs could be attributed to their bioactive compounds, which can be exploited and used as preservatives by food industries.


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 770-770
Author(s):  
T. Thomidis ◽  
I. Prodromou ◽  
A. Zambounis

2018 ◽  
Vol 64 (6) ◽  
pp. 420-431 ◽  
Author(s):  
Rhiannon L. Wallace ◽  
Danielle L. Hirkala ◽  
Louise M. Nelson

The ability of Pseudomonas fluorescens isolates 1-112, 2-28, and 4-6, to control Mucor piriformis (Mucor rot) on Gala, McIntosh, Ambrosia, and Spartan apple cultivars in commercial cold storage and their possible mechanisms of action were investigated. Isolates 1-112 and 2-28 provided significant levels of disease control on McIntosh and Spartan apples, while isolate 4-6 provided control of Mucor rot on Gala and Spartan apples, compared with control fruits after 15 weeks of storage at 0 °C. Mycelial growth of M. piriformis was markedly inhibited by cell-free supernatant and volatile organic compounds produced by P. fluorescens isolates, in vitro. In filter-sterilized apple juice, living cells of all 3 P. fluorescens isolates or their metabolites significantly inhibited spore germination by 99.8% and 61.6%, on average, respectively. Electron microscopy indicated that all 3 isolates of P. fluorescens colonized the hyphae of M. piriformis, but only isolate 1-112 was observed to colonize M. piriformis spores in vitro. In the wounds of apple, all 3 isolates formed a biofilm on the fungal hyphae and on the fruit tissue. Potential mechanisms of antagonism utilized by P. fluorescens against M. piriformis may include competition for nutrients and space, production of inhibitory metabolites and volatiles, and biofilm formation, leading to inhibition of spore germination and mycelial growth.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1054-1063 ◽  
Author(s):  
S. Saito ◽  
T. J. Michailides ◽  
C. L. Xiao

In recent years, an emerging, undescribed postharvest disease was observed on mandarin fruit after extended storage in California. We collected decayed mandarin fruit from three citrus packinghouses in the Central Valley of California in 2015 and identified this disease as Mucor rot caused by Mucor spp. Mucor rot occurred in 11 of the 15 grower lots sampled, and the percentage of Mucor rot in the total decayed fruit varied among affected grower lots, ranging from 3.3 to 93.1% with an average of 49.2%. In total, 197 isolates of Mucor spp. were obtained from decayed mandarin fruit and identified based on internal transcribed spacer sequence and morphological characteristics. Of the 197 isolates, 182 (92.4%) were identified as Mucor piriformis, 7 (3.6%) were M. circinelloides (6 M. circinelloides f. lusitanicus and 1 M. circinelloides f. circinelloides), 4 (2%) were M. racemosus f. racemosus, 3 (1.5%) were M. hiemalis, and 1 (0.5%) was M. mucedo. All species grew at 0 and 5°C, except M. circinelloides, which did not grow at 0°C. Mycelial growth was arrested at 27°C for M. piriformis; 35°C for M. racemosus f. racemosus, M. circinelloides f. lusitanicus, M. hiemalis and M. mucedo; and 37°C for M. circinelloides f. circinelloides. Optimal mycelial growth occurred at 20°C for M. piriformis and M. mucedo, 25°C for M. racemosus f. racemosus and M. hiemalis, 27°C for M. circinelloides f. lusitanicus, and 30°C for M. circinelloides f. circinelloides. M. piriformis grew significantly faster than the other four species at 5 and 20°C, and M. mucedo was the slowest in growth among the five species. Sporangiospores of M. piriformis, M. racemosus f. racemosus, and M. hiemalis germinated at both 5 and 20°C. M. circinelloides germinated at 20°C but did not germinate at 5°C after incubation for 48 h. All five Mucor spp. caused decay on mandarin fruit inoculated with the fungi, and the lesion size caused by M. piriformis was significantly larger than that caused by other species at both 5 and 20°C. Our results indicated that Mucor rot in mandarin fruit in California is caused by Mucor spp. consisting of M. piriformis, M. circinelloides, M. racemosus f. racemosus, M. hiemalis, and M. mucedo, with M. piriformis being the dominant and most virulent species. Previously, M. racemosus was reported on citrus. This is the first report of Mucor rot in citrus caused by M. piriformis, M. circinelloides, M. hiemalis, and M. mucedo.


2016 ◽  
Vol 11 (4) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Lauren AE Erland ◽  
Christopher R Bitcon ◽  
Ashley D Lemke ◽  
Soheil S Mahmoud

A growing body of literature indicates that many synthetic pesticides have adverse effects on human, animal, and environmental health. As a result, plant-derived natural products are quickly gaining momentum as safer and less ecologically damaging alternatives due to their low toxicity, high biodegradability, and good specificity. Essential oils of Lavandula angustifolia, Lavandula x intermedia cv Grosso, and Lavandula x intermedia cv Provence as well as various mono- and sesquiterpene essential oil constituents were tested in order to assess their antifungal potential on three important agricultural pathogens: Botrytis cinerea, Mucor piriformis, and Penicillium expansum. Fungal susceptibility testing was performed using disk diffusion assays. The majority of essential oil constituents tested did not have a significant effect; however, 3-carene, carvacrol, geraniol, nerol and perillyl alcohol demonstrated significant inhibition at concentrations as low as 1 μL/mL. In vivo testing using strawberry fruit as a model system supported in vitro results and revealed that perillyl alcohol, carvacrol and 3-carene were effective in limiting infection by postharvest pathogens.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1157-1157 ◽  
Author(s):  
J. Li ◽  
V. L. Gaskins ◽  
H. J. Yan ◽  
Y. G. Luo ◽  
W. M. Jurick II

Mucor piriformis E. Fischer causes Mucor rot of pome and stone fruits during storage and has been reported in Australia, Canada, Germany, Northern Ireland, South Africa, and portions of the United States (1,2). Currently, there is no fungicide in the United States labeled to control this wound pathogen on apple. Cultural practices of orchard sanitation, placing dry fruit in storage, and chlorine treatment of dump tanks and flumes are critical for decay management (3,4). Cultivars like ‘Gala’ that are prone to cracking are particularly vulnerable as the openings provide ingress for the fungus. Mucor rot was observed in February 2013 at a commercial packing facility in Pennsylvania. Decay incidence was ~15% on ‘Gala’ apples from bins removed directly from controlled atmosphere storage. Rot was evident mainly at the stem end and was light brown, watery, soft, and covered with fuzzy mycelia. Salt-and-pepper colored sporangiophores bearing terminal sporangiospores protruded through the skin. Five infected apple fruit were collected, placed in an 80-count apple box on trays, and temporarily stored at 4°C. Isolates were obtained aseptically from decayed tissue, placed on potato dextrose agar (PDA) petri plates, and incubated at 25°C with natural light. Five single sporangiospore isolates were identified as Mucor piriformis based on cultural characteristics according to Michailides and Spotts (1). The isolates produced columellate sporangia attached terminally on short and tall, branched and unbranched sporangiophores. Sporangiospores were ellipsoidal, subspherical, and smooth. Chlamydospore-like resting structures (gemmae), isogametangia, and zygospores were not evident in culture. Mycelial growth was examined on PDA, apple agar (AA), and V8 agar (V8) at 25°C with natural light. Isolates grew best on PDA at rates that ranged from 38.4 ± 5.3 to 34.5 ± 2.41 mm/day, followed by AA from 30.5 ± 1.22 to 28.5 ± 2.51 mm/day, and V8 from 29.2 ± 3.0 to 26.7 ± 2.17 mm/day. Species-level identification was conducted by isolating genomic DNA, amplifying a portion of the 28S rDNA gene, and directly sequencing the products. MegaBLAST analysis of the 2X consensus sequences revealed that all five isolates were 99% identical to M. piriformis (GenBank Accession No. JN2064761) with E values of 0.0, which confirms the morphological identification. Koch's postulates were conducted using organic ‘Gala’ apples that were surface sanitized with soap and water, then sprayed with 70% ethanol and allowed to air dry. Wounds 3 mm deep were created using the point of a finishing nail and then inoculated with 50 μl of a sporangiospore suspension (1 × 105 sporangiospores/ml) for each isolate. Ten fruit were inoculated with each isolate, and the experiment was repeated. The fruit were stored at 25°C in 80-count boxes on paper trays for 14 days. Decay observed on inoculated ‘Gala’ fruit was similar to symptoms originally observed on ‘Gala’ apples from storage and the pathogen was re-isolated from inoculated fruit. This is the first report of M. piriformis causing postharvest decay on stored apples in Pennsylvania and reinforces the need for the development of additional tools to manage this economically important pathogen. References: (1) T. J. Michailides, and R. A. Spotts. Plant Dis. 74:537, 1990. (2) P. L. Sholberg and T. J. Michailides. Plant Dis. 81:550, 1997. (3) W. L. Smith et al. Phytopathology 69:865, 1979. (4) R. A. Spotts. Compendium of Apple and Pear Diseases and Pests: Second Edition. APS Press, St. Paul, MN, 2014.


Sign in / Sign up

Export Citation Format

Share Document