time to fracture
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 15)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Alexandra Aparecida Tanomaru ◽  
Ana Grasiela Limoeiro ◽  
Adriana de Jesus Soares ◽  
Elson Lopes Medeiros Junior ◽  
Gabriel Rocha Campos ◽  
...  

Abstract Objective This study evaluated the dynamic cyclic fatigue resistance of the XP-Endo Shaper (XPS), associated with chlorhexidine digluconate (CHX) or sodium hypochlorite (NaOCl) in two different formulations: gel (G) or liquid (L). Materials and Methods Sixty XPS were used in an artificial stainless-steel canal, and the files were fully immersed in the irrigating solution throughout the experiment until the fracture. The files were divided into six groups (n = 10) based on the irrigation solution used: NaOCl(L), NaOCl(G), CHX(L), CHX(G), natrosol gel (NAT) (control), and lubricating oil (LO) (control). The artificial canal was manufactured 1.5 mm wide, 20 mm long, and, 3.5 mm deep with a straight cervical segment measuring 14.29 mm; an apical segment of 4.71 mm with 3 mm radius; and 90 degrees of curvature apical 1 mm long straight segment. Resistance to cyclic fatigue was determined by recording the number of cycles to fracture (NCF). Results The CHX(G), CHX(L), and OIL (LO) groups showed no significant difference between them and presented longer time to fracture (p > 0.05). NaOCl(L) shows the lowest NCF without significant differences between NaOCl(G) and NAT. The NCF of the NaOCl(G) was statistically similar to the CHX(L) and statistically lower than the CHX(G) and OIL groups. NAT did not present a statistical difference of the NaOCl(L), NaOCl(G), and presented a significantly lower NCF than the CHX(G) (p < 0.01). Conclusion The use of CHX(G) resulted in increased cyclic fatigue resistance of the XPS instruments compared to NaOCl or LO.


2021 ◽  
Vol 2 (4) ◽  
pp. e099
Author(s):  
Syed I. Khalid ◽  
Kyle B. Thomson ◽  
Adan Z. Becerra ◽  
Philip Omotosho ◽  
Anna Spagnoli ◽  
...  

2021 ◽  
Author(s):  
Hamed Karkehabadi ◽  
Abbas Farmani ◽  
Zahra Pakseresht ◽  
Faraz Sedaghat ◽  
Saber Yavari Niya

Abstract Objective: This study sought to assess the effect of cryogenic treatment on cyclic fatigue of Neoniti and Reciproc nickel-titanium (NiTi) rotary files. This in vitro, experimental study was performed on 48 Neoniti and Reciproc NiTi rotary files (#25, 6% taper) in two subgroups with and without cryogenic treatment. The files in cryogenic subgroups were stored in liquid nitrogen chamber at -196°C for 24 h. Next, they were placed at room temperature (25°C) to gradually warm up. Stainless steel (SS) blocks were used to standardize the degree of rotation of the files. The SS blocks simulated a root canal with the negative pattern of gutta-percha with 0.08 taper, #25 tip size, and 45° canal curvature. Each endodontic file was rotated in this canal until fracture. The time until fracture was recorded by a digital chronometer. Time to fracture was used to calculate the number of rotations before file fracture as the cyclic fatigue scale. Results: The mean cyclic fatigue resistance of both Neoniti and Reciproc rotary files in cryogenic subgroups was significantly higher than that in non-cryogenic control subgroups (P<0.05). Cryogenic treatment can significantly increase the cyclic fatigue resistance of Neoniti and Reciproc NiTi rotary files.


Author(s):  
Burçin Arıcan ◽  
Ayfer Atav Ateş

The aim of this study was to compare the cyclic fatigue resistance (CFR) of PathFile (Dentsply Sirona, Ballaigues, Switzerland) and ScoutRace (FKG Dentaire, La Chaux-de-Fonds, Switzerland) glide path files which were either new or previously used. Forty PathFile (PF) 19/.02 and 40 ScoutRace (SR) 20/.02 instruments were used for this study. Half of the files in each group were used (PF-U and SR-U) in the 3D demo tooth models (FKG Dentaire, La Chaux-de-Fonds, Switzerland) for creating glide paths, while the other half was new (PF-N and SR-N) and directly subjected to the cyclic fatigue test. The new and used files (n=80) were rotated in the cyclic fatigue test device with an artificial stainless-steel canal (60° curvature, 5 mm radius 1.5 mm width and 3.0 mm depth) under the continuous irrigation with distilled water at 37°C until fracture occurred. Time to fracture was recorded and the Weibull reliability analysis was performed. Data were statistically analysed. Conformity to normal distribution was examined using the Shapiro-Wilk test. A paired two-sample t-test was used to compare the TTF values according to the time within the groups. The new instruments (PF-N and SR-N) showed better CFR than the used groups (PF-U and SR-U) (P<0.05). The TTF values of PF were statistically higher than SR in both new and used groups (P<0.05). The predicted time for %99 survival for the files was PF-N> SR-N>PF-U >SR-U. Reuse of both glide path instruments reduced the time to fracture and the cyclic fatigue resistance of the files.


2021 ◽  
Vol 32 (3) ◽  
pp. 56-64
Author(s):  
Sara Fraga ◽  
Gabriel Kalil Rocha Pereira ◽  
Luís Felipe Guilardi ◽  
Liliana Gressler May ◽  
Luiz Felipe Valandro ◽  
...  

Abstract It aims on evaluate the effect of the test environment on static fatigue behavior of lithium disilicate-based (LD), and yttrium oxide-stabilized zirconia (YSZ) ceramics. Specimens of LD (IPS e.max CAD, Ivoclar Vivadent) and YSZ (IPS e.max ZirCAD MO, 3 mol% Y2O3, Ivoclar Vivadent) were randomly allocated into three groups: tested in air, inert (paraffin oil, Sigma Aldrich) or distilled water. The static fatigue test (n=15) was performed using a piston-on-three ball assembly, adapted from ISO 6872, as follows: starting load 100 N for LD and 300 N for YSZ; loading application time set to 1 hour for each loading step; step size of 50 N for LD and 100 N for YSZ, applied successively until fracture. Data from static fatigue strength (MPa) and time to fracture (hours) were recorded. Fractographic analysis was executed. Survival analysis corroborates absence of influence of environment on static fatigue outcomes (fatigue strength, time to fracture and survival rates) for YSZ. For LD, specimens tested in air presented statistically superior survival rate and static fatigue strength (p= 0.025). In regards of time to fracture, LD tested in air were superior than when tested in distilled water (p=0.019) or inert (p=0.017) environments. No statistical differences for Weibull modulus were observed. Failures started on the tensile stress surface. Thus, the test environment did not affect slow crack growth (SCG) mechanisms during static fatigue test of YSZ ceramics, but it plays a significant role for the static fatigue behavior of lithium disilicate-based glass ceramics, indicating a high susceptibility to SCG.


2021 ◽  
Vol 11 (11) ◽  
pp. 4950
Author(s):  
Sebastian Bürklein ◽  
Paul Maßmann ◽  
David Donnermeyer ◽  
Karsten Tegtmeyer ◽  
Edgar Schäfer

The aim was to evaluate the influence of artificial canal size on the results of cyclic fatigue tests for endodontic instruments. Dynamic cyclic fatigue at body temperature using continuous tapered nickel–titanium F6-SkyTaper instruments (Komet, Lemgo, Germany), size 25/.06 with an amplitude of 3 mm, was tested in four different simulated root canals: (A) size of the instrument +0.02 mm (within the tolerances of the instruments); (B) +0.05 mm; (C) +0.10 mm; (D) parallel tube with 1.25 mm in diameter. The artificial canals (angle of curvature 60°, radius 5.0 mm, center of curvature 5.0 mm) were produced by a LASER-melting technique. Time and cycles to fracture, and lengths of the fractured instruments were recorded and statistically analyzed (Student–Newman–Keuls; Kruskal–Wallis test). Time to fracture significantly increased with increasing size of the artificial canals in the following order: A < B, C < D (p < 0.05). Length of separated instruments continuously decreased with increasing canal sizes. The parallel tube produced the significantly shortest fragments (p < 0.05). Within the limitations of this study, dynamic cyclic fatigue of endodontic instruments depends on the congruency of the instruments’ dimensions with that of the artificial canals. In future cyclic fatigue testing, due to the closer match of canal and instrument parameters, it is necessary to adjust the artificial canal sizes to the size of the instruments within the manufacturing tolerances of the instruments.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
M. Wurm ◽  
M. Zyskowski ◽  
F. Greve ◽  
A. Gersing ◽  
P. Biberthaler ◽  
...  

Abstract Purpose Absence of cortical alignment in wedge-shaped and multifragmentary fractures (Fx) results in decreased fixation stability. The aim of this study was to compare the outcome using 2.0- vs. 3.5-mm screws for open reduction and internal fixation (ORIF) in dislocated, wedge-shaped or fragmentary midshaft clavicle fractures. Materials and methods Patients suffering from AO/OTA 15 2.A-C midshaft clavicle fractures were operatively treated between 2008 and 2018. 2.0- or 3.5-mm cortical screws were used to restore anatomic alignment in dislocated, wedge-shaped and fragmentary clavicle fractures. Data of radiologic outcome were collected until fracture consolidation was identified. Results 80 consecutive patients with a mean age of 44.5 ± 16.3 years, who were operatively treated for dislocated midshaft clavicle fractures were enrolled. 40 patients were treated using 2.0-mm and 40 patients using routine 3.5-mm cortical screws, respectively. Time to fracture consolidation was 12.8 ± 7.8 months. No mal- or non-unions occurred during routine follow-up until 18 months postoperatively. Conclusion Restoring anatomic alignment in wedge or fragmentary clavicle fractures can ultimately be addressed using cortical screw augmentation. Both groups showed comparable results with respect to fracture reduction, fixation and stability as well as time to consolidation of the fracture, while the 2.0-mm screw diameter was associated with easier handling of small Fx fragments.


2020 ◽  
Vol 10 (19) ◽  
pp. 6666
Author(s):  
Eugenio Pedullà ◽  
Giusy Rita Maria La Rosa ◽  
Marco Sesto Albani ◽  
Gaetano Isola ◽  
Taha Özyürek ◽  
...  

To evaluate the effect of simultaneous liquid or gel sodium hypochlorite (NaOCl) irrigation on cyclic fatigue of F6 SkyTaper (F6ST) and OneCurve (OC) single files, 180 new 25/0.06 F6ST and OC files were divided into 6 groups (n = 15) for each brand. Groups 1 and 4 included new instruments not exposed to NaOCl at 20 °C and 37 °C, respectively. Groups 2 and 5 included files activated with liquid NaOCl at 20 °C and 37 °C, respectively. Groups 3 and 6 consisted of instruments tested with NaOCl gel at 20 °C and 37 °C, respectively. Instruments were subjected to a fatigue test using a novel customized device. Data were expressed as time to fracture (TtF) and statistically analyzed (p < 0.05) after checking their normality through the Shapiro–Wilk test. Because they were normally distributed, 2-way analyses of variance (ANOVA) and the Tukey multiple comparison post-hoc test were used. Time to fracture of all tested instruments decreased at 37 °C (p < 0.05). At 20 °C, NaOCl improved TtF of F6ST and OC (p < 0.05). NaOCl liquid increased TtF of F6ST (p < 0.05) in comparison with gel, while there was no difference between the two formulations for OC. At 37 °C, both NaOCl formulations had no significant influence on TtF for F6ST, while they increased TtF of OC (p < 0.05). NaOCl improved the cyclic fatigue resistance of OC, independently of the temperature, while for F6ST the negative impact of higher temperature reduced the irrigant benefits.


2020 ◽  
Vol 14 (3) ◽  
pp. 177-180
Author(s):  
Ahmet Demirhan Uygun

Background. This study aimed to compare the VDW.ROTATE instruments with the Reciproc Blue instruments in different kinematics in terms of the cyclic fatigue resistance. Methods. Sixty instruments, 40 VDW.ROTATE and 20 Reciproc Blue instruments, were divided into three groups (n=20): VDW.ROTATE was used in both continuous rotation and reciprocation, and Reciproc Blue was used in reciprocation only. The cyclic fatigue resistance test was carried out in an artificial canal (60°, r=3 mm) at an intracanal temperature of 35±2°C until fracture, and the time to fracture was recorded in seconds. The data were analyzed statistically using Kruskal–Wallis and Tamhane’s T2 tests (P<0.05). Results. DAll the reciprocating motion groups resulted in a longer mean duration to failure than the continuous rotation motion group (P<0.05). Conclusion. It was observed that the Reciproc Blue instruments had higher cyclic fatigue resistance than VDW.ROTATE instruments (P<0.05). Recent studies have shown that reciprocal movement increases cyclic fatigue resistance compared to rotational movement. The VDW.ROTATE instrument, which has a similar size, design, and alloy as the Reciproc Blue instrument, can also be used by clinicians in reciprocating motion with endo motors capable of reciprocating in different directions. However, even if the cyclic fatigue resistance increases by using VDW.ROTATE instruments in reciprocation, the cyclic fatigue resistance is lower than Reciproc Blue instruments.


Sign in / Sign up

Export Citation Format

Share Document