scholarly journals Remote Triggering of Damage Followed by Healing Recorded in Groundwater Pressure

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3656
Author(s):  
Eyal Shalev ◽  
Hallel Lutzky ◽  
Ittai Kurzon ◽  
Vladimir Lyakhovsky

Water levels in three adjacent water wells in the Yarmouk Gorge area have all responded to the 2020 Elazığ Mw 6.8 teleseismic earthquake. Water levels in two aquifers exhibited reciprocal behavior: during the first eight days after the earthquake, water level decreased by 40 cm in the deeper highly confined aquifer, and increased by 90 cm in the shallower less confined aquifer. The recovery of the water levels in both aquifers continued for at least three months. We interpret these observations as reflecting the increase in damage along the fault at the Yarmouk Gorge. Ground shaking increased the damage and permeability of this fault, temporarily connecting the two aquifers, allowing flow from the deep aquifer to the shallow one. Model results showing decreased permeability suggest that the fault healed by one order of magnitude within three days. This is the first documentation of decrease in permeability in a fault zone within such short time scales.

2018 ◽  
Vol 37 (1) ◽  
pp. 113-120
Author(s):  
Habiba Majour ◽  
Azzedine Hani ◽  
Larbi Djabri

Abstract The potentiometer area in the Annaba basin, covering an area of 264 km2, has declined considerably since 1995. The analysis of the chronological hydrographs (1991–2009) of the piezometric observations shows that this decline is related to about twenty years (20 years) drought that began in 1991. To synthesize hydrological data and study regional changes in aquifer interactions caused by changes in discharge, and determine the contamination of aquifers by salty intrusion in coastal areas, and making forecasts by the year 2023, a multi-layered transient model as well as a solute transport model has been developed. The groundwater flow was modelled using the finite difference method with a horizontal dimension of 500 × 500 m for the cells. The model consists of two layers, the first corresponding to the alluvial phreatic aquifer and the second to the deep confined aquifer, and is calibrated against the steady state groundwater heads recorded before 1996. Model verification was done by history matching over the period 1991–2009. Under steady-state conditions, the correspondence between simulated and observed water levels is generally good (average difference of 0.4 m). For the deep aquifer, the simulated time-series hydrographs closely match the recorded hydrographs for most of the observation wells. For the alluvial aquifer, the recorded hydrographs cover only a short time period, but they are reproduced. The model indicates that groundwater pumping induced a decrease in natural discharge, a downward leakage in most of the basin and a continual water-level decline. The model has also been applied to the analysis of recharge impact. Simulating the behaviour of the system over the period 1991–2009 without pumping indicated small changes in hydraulic head. These results show that the groundwater reservoir has a low recharge, but excellent hydraulic properties. A solute-transport model was used to study aquifer contamination from salty intrusion in coastal sectors; it was extended to the year 2023 by simulating an optimistic hypothesis that maintains present pumping until 2023. The model indicates that the head decrease of the alluvial phreatic and deep confined aquifers will be 4 m and 5 m respectively. The solute concentration in the deep confined aquifer will increase from 1 gꞏdm−3 (prior 2009) to 5 gꞏdm−3 in 2023.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3529
Author(s):  
Jinbang Cai ◽  
Ping Wang ◽  
Huan Shen ◽  
Yue Su ◽  
Yong Huang

Based on the geological and hydrogeological conditions, and in situ hydrogeological tests of the emergency groundwater source in Nantong City, China, a 3D numerical model of the heterogeneous anisotropy in the study area was established and calibrated using data from pumping and recovery tests. The calibrated model was used to simulate and predict the water level of the depression cone during the emergency pumping and water level recovery. The results showed that after seven days of pumping, the water level in the center of the depression cone ranged from −51 m to −55 m, and compared with the initial water level, the water level dropped by 29 m to 32 m. The calculated water level has a small deviation compared with that of the analytical solution, which indicates the reliability and rationality of the numerical solution. Furthermore, during water level recovery, the water level of pumping wells and its surroundings rose rapidly, which was a difference of about 0.28 m from the initial water level after 30 days, indicating that the groundwater level had recovered to the state before pumping. Due to the emergency pumping time is not long, the water levels of Tonglu Canal, surrounding residential wells, and other aquifers will not be affected. After stopping pumping, the water level recovers quickly, so the change of water level in a short time will not lead to large land subsidence and has little impact on the surrounding environment.


2014 ◽  
Vol 2 (11) ◽  
pp. 7061-7088 ◽  
Author(s):  
T. Bulteau ◽  
D. Idier ◽  
J. Lambert ◽  
M. Garcin

Abstract. The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces the issue of outliers, those particularly extreme values distant from the others which increase the uncertainty on the results. In this study, we investigate how historical information, even partial, of past events reported in archives can reduce statistical uncertainties and relativize such outlying observations. A Bayesian Markov Chain Monte Carlo method is developed to tackle this issue. We apply this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide gauge measurements and 8 historical events, the analysis shows that: (1) integrating historical information in the analysis greatly reduces statistical uncertainties on return levels (2) Xynthia's water level no longer appears as an outlier, (3) we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data till end of 2009 of the same order of magnitude as the standard estimative probability using data till end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.


2015 ◽  
Vol 15 (6) ◽  
pp. 1135-1147 ◽  
Author(s):  
T. Bulteau ◽  
D. Idier ◽  
J. Lambert ◽  
M. Garcin

Abstract. The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide-gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces the issue of outliers, those particularly extreme values distant from the others which increase the uncertainty on the results. In this study, we investigate how historical information, even partial, of past events reported in archives can reduce statistical uncertainties and relativise such outlying observations. A Bayesian Markov chain Monte Carlo method is developed to tackle this issue. We apply this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide-gauge measurements and 8 historical events, the analysis shows that (1) integrating historical information in the analysis greatly reduces statistical uncertainties on return levels (2) Xynthia's water level no longer appears as an outlier, (3) we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data until the end of 2009 of the same order of magnitude as the standard estimative probability using data until the end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


2017 ◽  
Vol 54 (1) ◽  
pp. 15-32
Author(s):  
Theresa Jehn-Dellaport ◽  
Tammi Renninger

A partially defined and largely unexplored confined aquifer in Colorado, Nebraska, and Wyoming is identified regionally through interpretation of geophysical logs, well drilling, coring, petrographic analysis, and GIS interpretation. The aquifer is a fine-grained arkosic sandstone, with thickness ranging up to 1000 ft in some areas. The aquifer represents a significant water resource for ranching and other development in northeastern Colorado and may be a resource for Wyoming, and Nebraska. Nomenclature for this aquifer is suggested. Water wells penetrating the entire aquifer have produced up to 200 gpm. Water quality data is presented including total dissolved solids, boron, and microbial methane.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


Sign in / Sign up

Export Citation Format

Share Document