scholarly journals Development of Lipid-Based Gastroretentive Delivery System for Gentian Extract by Double Emulsion–Melt Dispersion Technique

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2095
Author(s):  
Jelena Mudrić ◽  
Katarina Šavikin ◽  
Ljiljana Đekić ◽  
Stefan Pavlović ◽  
Ivana Kurćubić ◽  
...  

Gentian (Gentiana lutea L., Gentianaceae) root extract (GRE) is used for the treatment of gastrointestinal disorders. However, its bioactive potential is limited in conventional forms due to the low bioavailability and short elimination half-life of the dominant bioactive compound, gentiopicroside. The aim of study was to encapsulate GRE in the lipid-based gastroretentive delivery system that could provide high yield and encapsulation efficiency, as well as the biphasic release of gentiopicroside from the tablets obtained by direct compression. Solid lipid microparticles (SLM) loaded with GRE were prepared by freeze-drying double (W/O/W) emulsions, which were obtained by a multiple emulsion–melt dispersion technique, with GRE as the inner water phase, Gelucire® 39/01 or 43/01, as lipid components, with or without the addition of porous silica (Sylysia® 350) in the outer water phase. Formulated SLM powders were examined by SEM and mercury intrusion porosimetry, as well as by determination of yield, encapsulation efficiency, and flow properties. Furthermore, in vitro dissolution of gentiopicroside, the size of the dispersed systems, mechanical properties, and mucoadhesion of tablets obtained by direct compression were investigated. The results have revealed that SLM with the macroporous structure were formulated, and, consequently, the powders floated immediately in the acidic medium. Formulation with porous silica (Sylysia® 350) and Gelucire® 43/01 as a solid lipid was characterized with the high yield end encapsulation efficiency. Furthermore, the mucoadhesive properties of tablets obtained by direct compression of that formulation, as well as the biphasic release of gentiopicroside, presence of nanoassociates in dissolution medium, and optimal mechanical properties indicated that a promising lipid-based gastroretentive system for GRE was developed.

2021 ◽  
Author(s):  
Erico Himawan ◽  
Li Huang ◽  
Soumaya Belhadj ◽  
Raul Oswaldo Perez Garcia ◽  
François Paquet-Durand ◽  
...  

Delivering small hydrophilic drug molecules to the retina is a challenging task in ophthalmology. A solid lipid nanoparticle (SLP) with a composite shell and hydrogel core as delivery system of a hydrophilic cargo to retinal cells has been developed in this work to meet the challenge. The composite shell formed by lipid and hydrophobic polyesters improves polydispersity while the hydrogel core enhances the encapsulation efficiency when compared to conventional SLP. In vitro studies tracking internalization and release of hydrophilic fluorescent dyes in retinal pigment epithelium and photoreceptor cell lines, showed a successful uptake and release of the hydrophilic cargo inside the cells. Validation of SLP encapsulation capability using a neuroprotective cGMP analogue resulted in a SLP size < 250 nm, negative surface charge > -20 mV, and encapsulation efficiency value of 60%. This formulation shows a potential to be applied as ocular drug delivery system and may open new perspectives for developing a treatment for retinal diseases.


2021 ◽  
Vol 10 (14) ◽  
pp. 1030-1034
Author(s):  
Sundareswara Kumar Chellaswamy ◽  
Satheesh Babu Natrajan

BACKGROUND Osteoarthritis is a common, age-related, chronic and slowly progressive joint disorder which ultimately leads to joint failure. To achieve sustained release drug delivery and ease of administration, the present study was carried out to formulate a glucosamine solid lipid microparticle-based hydrogel. METHODS 20 batches of glucosamine solid lipid microparticle were prepared by melt dispersion technique. They were then evaluated with regard to various parameters such as physical appearance, pH analysis, spreadability, viscosity, drug content, in vitro drug release and accelerated stability studies. Then the glucosamine solid lipid microparticle-based hydrogel was compared with the glucosamine loaded hydrogel. RESULTS Of these batches, batches 18, 19 and 20 of increasing homogenizing speed of 1000, 1500 and 2000 rpm were found be efficient but the batch 18 showed better encapsulation efficiency. Batch 18 showed particle size of 86 ± 5 µm, encapsulation efficiency of 81.74 ± 4.5 and the zeta potential value of - 29 ± 1. So, batch 18 was found to be the optimised formulation which was further taken for incorporating the Carbopol. The efficient encapsulated glucosamine solid lipid microparticle-based hydrogel was formulated. There were no significant changes in physicochemical properties on stability studies. CONCLUSIONS Glucosamine solid lipid microparticle-based hydrogel had good particle size, high encapsulation efficiency and high zeta potential value and showed high percentage drug release which was better than the glucosamine loaded hydrogel. KEY WORDS Glucosamine Solid Lipid Microparticle Based Hydrogel, Osteoarthritis, Encapsulation Efficiency, Zeta Potential, Melt Dispersion Technique


2011 ◽  
Vol 236-238 ◽  
pp. 241-246 ◽  
Author(s):  
Yuan Bo Huang ◽  
Zhi Feng Zheng ◽  
Hao Feng ◽  
Hui Pan

The resol-type resin was prepared with a high yield from the liquefied products of walnut shell in phenol, which was reacted with formaldehyde under low alkaline conditions. The effects of reaction temperature and time on the yield and viscosity of the resol resin were investigated. Results showed that the optimum resol resinification conditions were a reaction temperature of 80°C and a reaction time of 2 h. The biomass-based resol resin from liquefied products of walnut shell was successfully applied to produce phenolic foam with diisopropyl ether as the blowing agent, Tween 80 as the surfactant and hydrochloric acid as the catalyst, respectively. The obtained foams showed satisfactory mechanical properties and a uniform fine cellular structure.


2014 ◽  
Vol 88 (3) ◽  
pp. 746-758 ◽  
Author(s):  
Daniela Chirio ◽  
Marina Gallarate ◽  
Elena Peira ◽  
Luigi Battaglia ◽  
Elisabetta Muntoni ◽  
...  

2007 ◽  
Vol 22 (2) ◽  
pp. 326-333 ◽  
Author(s):  
J. Das ◽  
S. Pauly ◽  
C. Duhamel ◽  
B.C. Wei ◽  
J. Eckert

Cu47.5Zr47.5Al5 was prepared by arc melting and solidified in situ by suction casting into 2–5-mm-diameter rods under various cooling rates (200–2000 K/s). The microstructure was investigated along the length of the rods by electron microscopy, differential scanning calorimetry and mechanical properties were investigated under compression. The microstructure of differently prepared specimens consists of macroscopic spherical shape chemically inhomogeneous regions together with a low volume fraction of randomly distributed CuZr B2 phase embedded in a 2–7 nm size clustered “glassy-martensite” matrix. The as-cast specimens show high yield strength (1721 MPa), pronounced work-hardening behavior up to 2116 MPa and large fracture strain up to 12.1–15.1%. The fracture strain decreases with increasing casting diameter. The presence of chemical inhomogenities and nanoscale “glassy-martensite” features are beneficial for improving the inherent ductility of the metallic glass.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3580
Author(s):  
Chuda Chittasupho ◽  
Jakrapong Angklomklew ◽  
Thanu Thongnopkoon ◽  
Wongwit Senavongse ◽  
Pensak Jantrawut ◽  
...  

A hydrogel scaffold is a localized drug delivery system that can maintain the therapeutic level of drug concentration at the tumor site. In this study, the biopolymer hydrogel scaffold encapsulating doxorubicin was fabricated from gelatin, sodium carboxymethyl cellulose, and gelatin/sodium carboxymethyl cellulose mixture using a lyophilization technique. The effects of a crosslinker on scaffold morphology and pore size were determined using scanning electron microscopy. The encapsulation efficiency and the release profile of doxorubicin from the hydrogel scaffolds were determined using UV-Vis spectrophotometry. The anti-proliferative effect of the scaffolds against the lung cancer cell line was investigated using an MTT assay. The results showed that scaffolds made from different types of natural polymer had different pore configurations and pore sizes. All scaffolds had high encapsulation efficiency and drug-controlled release profiles. The viability and proliferation of A549 cells, treated with gelatin, gelatin/SCMC, and SCMC scaffolds containing doxorubicin significantly decreased compared with control. These hydrogel scaffolds might provide a promising approach for developing a superior localized drug delivery system to kill lung cancer cells.


2019 ◽  
Vol 56 (1) ◽  
pp. 239-244
Author(s):  
Monica Iliuta Stamate ◽  
Ciprian Stamate ◽  
Daniel Timofte ◽  
Bogdan Ciuntu ◽  
Carmen Gafitanu ◽  
...  

In this study, the effect of polymers on the mechanical properties of ketoprofen extended drug release systems were studied. Many polymers are added in formulation of compressed tablets in order to improve the physicochemical characteristics of the drug release system. The samples were made in the form of cylindrical tablet about 9 mm in diameter, containing different mixtures of drug substances and excipients acording to seven formulations. Cylindrical tablets containing mixtures of ketoprofen and various types of polymers are made by direct compression method. Among the binders used were a series of different polymers like Kollidon va 64, hydroxypropyl methyl cellulose and sodium carboxyl methyl cellulose. Mechanical parameters such as hardness, mechanical strenght, friability and roughness were studied in order to determine how they are influenced by polymeric binders.


2009 ◽  
Vol 8 (3) ◽  
pp. 48-52
Author(s):  
M. G. Kartalov ◽  
S. Ye. Dmitruk ◽  
V. S. Dmitruk ◽  
T. V. Romanenko

In this article the structure-mechanical properties research results of «Kartalin» ointment are being cited. This ointment shows the evident treatment-preventive activity with occupational and combinational dermatosis. It has been ascertained that the «Kartalin» ointment, being under consideration, appears to be structural liquid with expressive non-Newtonian flow character that is having high viscosity (100—200 Pa/s) and high yield point (20—40 Pa) with the temperature of usage 30—40 °C, which provides long skin protection. The flow properties of the composition are sufficiently time stable, which enables good preparation quality maintenance during long-term storing.


Sign in / Sign up

Export Citation Format

Share Document