scholarly journals Witnessing objectivity on a quantum computer

Author(s):  
Dario Alexander Chisholm ◽  
Guillermo Garcia-Perez ◽  
Matteo A. C. Rossi ◽  
Sabrina Maniscalco ◽  
G.Massimo Massimo Palma

Abstract Understanding the emergence of objectivity from the quantum realm has been a long standing issue strongly related to the quantum to classical crossover. Quantum Darwinism provides an answer, interpreting objectivity as consensus between independent observers. Quantum computers provide an interesting platform for such experimental investigation of quantum Darwinism, fulfilling their initial intended purpose as quantum simulators. Here we assess to what degree current NISQ devices can be used as experimental platforms in the field of quantum Darwinism. We do this by simulating an exactly solvable stochastic collision model, taking advantage of the analytical solution to benchmark the experimental results.

1974 ◽  
Vol 96 (3) ◽  
pp. 415-420 ◽  
Author(s):  
T. E. Cooper ◽  
W. K. Petrovic

Liquid crystals, a material that exhibits brilliant changes in color over narrow temperature bands, have been successfully used to study the temperature field that is produced by a cryosurgical cannula (cryoprobe). Cryoprobe tip temperatures ranging from −36 to −117 C were used to produce frozen regions in a clear gel. Experimental results compare within experimental uncertainty with results of a one-dimensional analytical solution for predicting ice growth rates.


2019 ◽  
Vol 8 (4) ◽  
pp. 9461-9464

Current quantum computer simulation strategies are inefficient in simulation and their realizations are also failed to minimize those impacts of the exponential complexity for simulated quantum computations. We proposed a Quantum computer simulator model in this paper which is a coordinated Development Environment – QuIDE (Quantum Integrated Development Environment) to support the improvement of algorithm for future quantum computers. The development environment provides the circuit diagram of graphical building and flexibility of source code. Analyze the complexity of algorithms shows the performance results of the simulator and used for simulation as well as result of its deployment during simulation


2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Elisa Bäumer ◽  
Nicolas Gisin ◽  
Armin Tavakoli

AbstractIncreasingly sophisticated quantum computers motivate the exploration of their abilities in certifying genuine quantum phenomena. Here, we demonstrate the power of state-of-the-art IBM quantum computers in correlation experiments inspired by quantum networks. Our experiments feature up to 12 qubits and require the implementation of paradigmatic Bell-State Measurements for scalable entanglement-swapping. First, we demonstrate quantum correlations that defy classical models in up to nine-qubit systems while only assuming that the quantum computer operates on qubits. Harvesting these quantum advantages, we are able to certify 82 basis elements as entangled in a 512-outcome measurement. Then, we relax the qubit assumption and consider quantum nonlocality in a scenario with multiple independent entangled states arranged in a star configuration. We report quantum violations of source-independent Bell inequalities for up to ten qubits. Our results demonstrate the ability of quantum computers to outperform classical limitations and certify scalable entangled measurements.


2020 ◽  
Vol 19 (10) ◽  
Author(s):  
Laszlo Gyongyosi

Abstract Superconducting gate-model quantum computer architectures provide an implementable model for practical quantum computations in the NISQ (noisy intermediate scale quantum) technology era. Due to hardware restrictions and decoherence, generating the physical layout of the quantum circuits of a gate-model quantum computer is a challenge. Here, we define a method for layout generation with a decoherence dynamics estimation in superconducting gate-model quantum computers. We propose an algorithm for the optimal placement of the quantum computational blocks of gate-model quantum circuits. We study the effects of capacitance interference on the distribution of the Gaussian noise in the Josephson energy.


1972 ◽  
Vol 50 (8) ◽  
pp. 778-782 ◽  
Author(s):  
B. K. Gupta ◽  
S. Hess ◽  
A. D. May

The diffusion coefficient characterizing the Dicke narrowing of the rotational Raman lines, in general, depends on the polarizations of the incident and scattered light and on the scattering angle. Experimental results for the anisotropic diffusion coefficient are presented for 90° scattering and vv and vh polarizations of the S0(1) line in gaseous hydrogen. The physical interpretation of the observed anisotropy is given with the help of a simple collision model.


2020 ◽  
Vol 20 (9&10) ◽  
pp. 747-765
Author(s):  
F. Orts ◽  
G. Ortega ◽  
E.M. E.M. Garzon

Despite the great interest that the scientific community has in quantum computing, the scarcity and high cost of resources prevent to advance in this field. Specifically, qubits are very expensive to build, causing the few available quantum computers are tremendously limited in their number of qubits and delaying their progress. This work presents new reversible circuits that optimize the necessary resources for the conversion of a sign binary number into two's complement of N digits. The benefits of our work are two: on the one hand, the proposed two's complement converters are fault tolerant circuits and also are more efficient in terms of resources (essentially, quantum cost, number of qubits, and T-count) than the described in the literature. On the other hand, valuable information about available converters and, what is more, quantum adders, is summarized in tables for interested researchers. The converters have been measured using robust metrics and have been compared with the state-of-the-art circuits. The code to build them in a real quantum computer is given.


2014 ◽  
Vol 1078 ◽  
pp. 413-416
Author(s):  
Hai Yan Liu

The ultimate goal of quantum calculation is to build high performance practical quantum computers. With quantum mechanics model of computer information coding and computational principle, it is proved in theory to be able to simulate the classical computer is currently completely, and with more classical computer, quantum computation is one of the most popular fields in physics research in recent ten years, has formed a set of quantum physics, mathematics. This paper to electronic spin doped fullerene quantum aided calculation scheme, we through the comprehensive use of logic based network and based on the overall control of the two kinds of quantum computing model, solve the addressing problem of nuclear spin, avoids the technical difficulties of pre-existing. We expect the final realization of the quantum computer will depend on the integrated use of in a variety of quantum computing model and physical realization system, and our primary work shows this feature..


Sign in / Sign up

Export Citation Format

Share Document