scholarly journals Development of a DP980 steel with low cooling rate requirement

2021 ◽  
Vol 245 ◽  
pp. 01003
Author(s):  
Libo Pan ◽  
Wen Tan ◽  
Wenqiang Zhou ◽  
Junlin Wang

DP980 is a promising light-weightening material in car body. To avoid high investment of strong cooling system, a new DP980 steel with low cooling rate requirement was developed. The mechanical properties and microstructure were analyzed under different manufacturing process. It could be concluded that the chemical composition design should be reasonable and of low cost to achieve both high strength and also austenite to martensite transformation at low cooling rate. Strength increased with coiling temperature decreasing during hot rolling, and higher annealing temperature and lower over aging temperature were favourable to higher strength. The austenite-martensite transforming could be completed at even lower rapid cooling rate of 20°C/s. Through optimized manufacturing process parameters, the new DP steel product with good mechanical properties could be obtained successfully, which provided a new option for normal production line to produce ultra high strength steel.

Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


2021 ◽  
Author(s):  
Budi Arifvianto ◽  
Teguh Nur Iman ◽  
Benidiktus Tulung Prayoga ◽  
Rini Dharmastiti ◽  
Urip Agus Salim ◽  
...  

Abstract Fused filament fabrication (FFF) has become one of the most popular, practical, and low-cost additive manufacturing techniques for fabricating geometrically-complex thermoplastic polyurethane (TPU) elastomer. However, there are still some uncertainties concerning the relationship between several operating parameters applied in this technique and the mechanical properties of the processed material. In this research, the influences of extruder temperature and raster orientation on the mechanical properties of the FFF-processed TPU elastomer were studied. A series of uniaxial tensile tests was carried out to determine tensile strength, strain, and elastic modulus of TPU elastomer that had been printed with various extruder temperatures, i.e., 190–230 °C, and raster angles, i.e., 0–90°. Thermal and chemical characterizations were also conducted to support the analysis in this research. The results obviously showed the ductile and elastic characteristics of the FFF-processed TPU, with specific tensile strength and strain that could reach up to 39 MPa and 600%, respectively. The failure mechanisms operating on the FFF-processed TPU and the result of stress analysis by using the developed Mohr’s circle are also discussed in this paper. In conclusion, the extrusion temperature of 200 °C and raster angle of 0° could be preferred to be applied in the FFF process to achieve high strength and ductile TPU elastomer.


2018 ◽  
Vol 25 (6) ◽  
pp. 1039-1058 ◽  
Author(s):  
Sumit Das Lala ◽  
Ashish B. Deoghare ◽  
Sushovan Chatterjee

AbstractThe inherent properties of bio-composites such as biodegradability, environment friendly, low cost of production, high strength and durability make them a suitable replacement to traditional materials such as glass and nylon. Bio-polymers are finding wide applications due to their intrinsic properties such as low density, low thermal conductivity, corrosion resistance and ease of manufacturing complex shapes. This paper aims toward a comprehensive study on polymer bio-composites. The review mainly focuses on types of reinforcements such as natural fibers, seed shells, animal fibers, cellulose, bio-polymers, bio-chemicals and bioceramics which enhance the mechanical properties, such as tensile strength, compressive strength, flexural strength, Young’s modulus and creep behavior, of the composites. The pertinent study carried out in this review explores an enormous potentiality of the composites toward a wide variety of applications.


2015 ◽  
Vol 13 (2) ◽  
pp. 282-297
Author(s):  
Archana Rethinam ◽  
Vinoo D. Shivakumar ◽  
L. Harish ◽  
M.B. Abhishek ◽  
G.V. Ramana ◽  
...  

Purpose – The application of new technologies requires, however, modern rolling mills. Indeed, in manufacturing plants of older types, strict compliance with the developed rolling regimes is not always feasible. Improving the mechanical properties in such cases is possible only by means of cooling. Compressive deformation behavior of carbon–manganese (C-Mn) grade has been investigated at temperatures ranging from 800-900°C and strain rate from 0.01-50 s−1 on Gleeble-3800, a thermo-mechanical simulator. Simulation studies have been conducted mainly to observe the microstructural changes for various strain rate and deformation temperatures at a constant strain of 0.5 and a cooling rate of 20°C s−1. Design/methodology/approach – The project begins with simulation of a hot rolling condition using the thermo-mechanical simulator; this was followed by microstructural examination and identification of phases present by using an optical microscope for hot-rolled coil and simulated samples; grain size measurement and size distribution studies; and optimization of finishing temperature, coiling temperature and cooling rate by mimicking plant processing parameters to improve the mechanical properties. Findings – As the strain rate and temperature increase, pearlite banding decreases gradually and finally gets completely eliminated, thereby improving the mechanical properties. True stress–strain curves were plotted to extrapolate the effect of strain-hardening and strain rate sensitivity on austenite (γ) and austenite–ferrite (γ-a) regions. To validate the effect of strain rate and temperature over the grain size, the hardness of simulated samples was measured using the universal hardness tester and the corresponding tensile strength was found from the standard hardness chart. Practical implications – The results of the study carried out have projected a new technology of thermo-mechanical simulation for the studied C-Mn grade. These results were used to optimize the plant processing parameter like finishing and coiling temperature and finishing stands strain rate. Originality/value – By controlling the hot rolling conditions like finishing, coiling temperature and cooling rate, structures differing in mechanical properties can be obtained for the same material. Accurate understanding of a structure being formed when different temperatures are applied enables the control of the process that assures intended structures and mechanical properties are achieved.


2015 ◽  
Vol 6 (5) ◽  
pp. 589-604 ◽  
Author(s):  
Georgios Savaidis ◽  
Stylianos Karditsas ◽  
Alexander Savaidis ◽  
Roselita Fragoudakis

Purpose – The purpose of this paper is to investigate the fatigue and failure of commercial vehicle serial stress-peened leaf springs, emphasizing the technological impact of the material, the thermal treatment and the stress-peening process on the microstructure, the mechanical properties and the fatigue life. Theoretical fatigue analysis determines the influence of each individual technological parameter. Design engineers can assess the effectiveness of each manufacturing process step qualitatively and quantitatively, and derive conclusions regarding its improvement in terms of mechanical properties and fatigue life. Design/methodology/approach – Two different batches of 51CrV4 were examined to account for potential batch influences. Both specimen batches were subjected to the same heat treatment and stress-peening process. Investigations of their microstructure, hardness and residual stress state on the surface’ areas show the effect of the manufacturing process on the mechanical properties. Wöhler curves have been experimentally determined for the design of high-performance leaf springs. Theoretical fatigue analyses reveal the influence of every above mentioned technological factor on the fatigue life of the specimens. Therewith, the effectiveness and potential for further improvement of the manufacturing process steps are assessed. Findings – Microstructural analysis and hardness measurements quantify the decarburization and the degradation of the specimens’ surface properties. The stress-peening process causes significant compressive residual stresses which improve the fatigue life. On the other hand, it also leads to pronounced surface roughness, which reduces the fatigue life. The theoretical fatigue life analysis assesses the mutual effect of these two parameters. Both parameters cancel each other out in regards to the final effect on fatigue life. The sensitivity of the material and the potential for further improvement of both heat treatment and stress peening is appointed. Research limitations/implications – All quantitative values given here are strictly valid for the present leaf spring batches and should not be widely applied. The results of the present study indicate the sensitivity of high-strength spring steel used here to the various technological factors resulting from the heat treatment and the stress-peening process. In addition, it can be concluded that further research is necessary to improve the two processes (heat treatment process and the stress peening) under serial production conditions. Practical implications – The microstructure investigations in conjunction with the hardness measurements reveal the significant decrease of the mechanical properties of the highly stressed (failure-critical) tensile surface. Therewith, the potential for improvement of the heat treatment process, e.g. in more neutral and controlled atmosphere, can be derived. In addition, significant potential for improvement of the serially applied stress-peening process is revealed. Originality/value – The paper shows a systematic procedure to assess every individual manufacturing factor affecting the microstructure, the surface properties and finally, the fatigue life of leaf springs. An essential result is the quantification of the surface decarburization and its influence on the mechanical properties. The methodology proposed and applied within the theoretical fatigue life analysis to quantify the effect of technological factors on the fatigue life of leaf springs can be extended to any engineering component made of high-strength steel.


2013 ◽  
Vol 477-478 ◽  
pp. 1288-1292
Author(s):  
Bo Long Li ◽  
Tong Liu ◽  
Jie Yuan ◽  
Zuo Ren Nie

The high strength and low cost Ti-Fe based alloy was produced by double vacuum induction melting method followed by hot deformation. The microstructure has been investigated by Optical Microscopy, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The microstructure of as-forged alloy is composed of α and β phase without the precipitation of TiFe intermetallic compound. The Ti-Fe-Al alloys show good comprehensive mechanical properties, demonstrating ultimate tensile strength of 1100MPa and elongation above10%. The results indicate the Fe is a good candidate for solution strengthening and simultaneously increasing ductility in titanium alloys. Effect of the Fe and Al elements on the microstructure and mechanical properties have been discussed.


Teknik ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 149-159
Author(s):  
Miftakhur Rohmah ◽  
Dedi Irawan ◽  
Dedi P. Utama ◽  
Toni B. Romijarso

Laterite Steel A-588 has the potential to be a high strength low alloy for Corten steel application. Laterite steel A-588 is developed through a thermomechanical process followed by a tempering process to obtain high strength and corrosion resistance. This study aims to determine the correlation between the addition of nickel content, the variation of the cooling rate during heat treatment to the mechanical properties, and the corrosion resistance of A-588 laterite steel. The Cu, Cr, Ni, P, and Si elements significantly impact microstructure transformation. Laterite Steel A-588 with nickel and thermo-mechanical process variation has been focused on in this research. Laterite steel with 0,42%, 1%, 2%, and 3% nickel varied was homogenized, hot rolled, and heat treated with three cooling variations by water, oil, and air. They are processed with 150 C tempering. Low tempering temperature caused fine carbide precipitation and phase transition of martensite to bainite. This resulted in bainite as the final microstructure, lath tempered martensite, carbide, and ferrite. 3% Ni with a fast cooling rate increased the tempered martensite and bainite phase formation. It allowed the strength and hardness to increase relatively, followed by decreased elongation and corrosion resistance caused by the galvanic reaction. Most optimal of mechanical properties determined at a sample with 2% nickel in a water medium (strength 1203 MPa, elongation 10%, hardness 404 BHN, corrosion rate 1,306 mpy).


Sign in / Sign up

Export Citation Format

Share Document