scholarly journals Design of Optimal Real Time Emulators for Steam and Wind Turbines for Avoiding Risky Severe Conditions

Author(s):  
helmy El-Zoghby ◽  
Haitham S. Ramadan ◽  
Hassan Haes Alhelou

Abstract Modern energy infrastructures may face critical impacts on distributed generation and microgrids in presence of renewable and conventional energy sources. Fast restorations for these networks through proposing convenient proactive protection systems become mandatory for securing energy particularly after severe faults. This paper deals with presenting a descriptive modelling and comprehensive analysis of both steam and wind turbines using optimal real time emulators with unique testbench. Based on the dynamics of each turbine, both emulators are performed using 4kW, 180V, 1500r.p.m separately exited DC motor coupled to 2kW, 380V, 50Hz, 1500r.p.m three-phase synchronous generator. For real-time interface implementation, the mathematical models of steam and wind turbines are realized using LabVIEWTM software. The characterization and verification of both emulated steam and wind turbines are examined at different normal operating conditions in terms of steam valve position and wind speed, respectively. To regulate the current for both systems despite their diverse dynamics, a simple industrial proportional-integral (PI) controller is considered. Unlike other artificial intelligence-based controllers, the offline-controller gains are scheduled using genetic algorithm (GA) via MatlabTM software to ensure the due fast response to cope with unexpected faults. The experimental validity of both emulators is tested at the most severe abnormal operating conditions. The three-phase short circuit is considered at the generator terminals with different fault periods until reaching out-of-step conditions. From numerical analysis and experimental results, the characterization of both emulated steam and wind turbines explicitly mimics their real large-scale turbines in normal conditions. The emulators’ fast responses using the proposed GA-PI control approach are verified. Besides, the experimental dynamic behavior convergence and interoperability between the emulated and real systems for both steam and wind turbines are validated under severe conditions. The practical results confirm the fast-nature performance of the GA in avoid risky instability conditions.

2020 ◽  
Vol 10 (20) ◽  
pp. 7282
Author(s):  
Zicong Zhang ◽  
Junghun Lee ◽  
Gilsoo Jang

With the continuous development of power electronics technology, variable-speed offshore wind turbines that penetrated the grid system caused the problem of inertia reduction. This study investigates the frequency stability of synchronous, offshore wind-farm integration through a modular-multilevel-converter high-voltage direct-current (MMC–HVDC) transmission system. When full-scale converter wind turbines (type 4) penetrate the AC grid, the AC system debilitates, and it becomes difficult to maintain the AC system frequency stability. In this paper, we present an improved inertial-response-control method to solve this problem. The mathematical model of the synchronous generator is based on the swing equation and is theoretically derived by establishing a MMC–HVDC. Based on the above model, the inertia constant is analyzed using a model that integrates the MMC–HVDC and offshore synchronous generator. With the new improved control method, a more sensitive and accurate inertia index can be obtained using the formula related to the effective short-circuit ratio of the AC system. Moreover, it is advantageous to provide a more accurate inertial control evaluation for AC systems under various conditions. Furthermore, the impact of the MMC–HVDC on system safety is assessed based on the capacitor time constant. This simulation was implemented using the PSCAD/EMTDC platform.


2016 ◽  
Vol 17 (6) ◽  
pp. 703-716 ◽  
Author(s):  
Sina Zarrabian ◽  
Rabie Belkacemi ◽  
Adeniyi A. Babalola

Abstract In this paper, a novel intelligent control is proposed based on Artificial Neural Networks (ANN) to mitigate cascading failure (CF) and prevent blackout in smart grid systems after N-1-1 contingency condition in real-time. The fundamental contribution of this research is to deploy the machine learning concept for preventing blackout at early stages of its occurrence and to make smart grids more resilient, reliable, and robust. The proposed method provides the best action selection strategy for adaptive adjustment of generators’ output power through frequency control. This method is able to relieve congestion of transmission lines and prevent consecutive transmission line outage after N-1-1 contingency condition. The proposed ANN-based control approach is tested on an experimental 100 kW test system developed by the authors to test intelligent systems. Additionally, the proposed approach is validated on the large-scale IEEE 118-bus power system by simulation studies. Experimental results show that the ANN approach is very promising and provides accurate and robust control by preventing blackout. The technique is compared to a heuristic multi-agent system (MAS) approach based on communication interchanges. The ANN approach showed more accurate and robust response than the MAS algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ali Hmidet ◽  
Olfa Boubaker

In this paper, a new design of a real-time low-cost speed monitoring and closed-loop control of the three-phase induction motor (IM) is proposed. The proposed solution is based on a voltage/frequency (V/F) control approach and a PI antiwindup regulator. It uses the Waijung Blockset which considerably alleviates the heaviness and the difficulty of the microcontroller’s programming task incessantly crucial for the implementation and the management of such complex applications. Indeed, it automatically generates C codes for many types of microcontrollers like the STM32F4 family, also used in this application. Furthermore, it offers a cost-effective design reducing the system components and increasing its efficiency. To prove the efficiency of the suggested design, not only simulation results are carried out for a wide range of variations in load and reference speed but also experimental assessment. The real-time closed-loop control performances are proved using the aMG SQLite Data Server via the UART port board, whereas Waijung WebPage Designer (W2D) is used for the web monitoring task. Experimental results prove the accuracy and robustness of the proposed solution.


2008 ◽  
Vol 613 ◽  
pp. 55-83 ◽  
Author(s):  
FARRUKH S. ALVI ◽  
HUADONG LOU ◽  
CHIANG SHIH ◽  
RAJAN KUMAR

Supersonic impinging jet(s) inherently produce a highly unsteady flow field. The occurrence of such flows leads to many adverse effects for short take-off and vertical landing (STOVL) aircraft such as: a significant increase in the noise level, very high unsteady loads on nearby structures and an appreciable loss in lift during hover. In prior studies, we have demonstrated that arrays of microjets, appropriately placed near the nozzle exit, effectively disrupt the feedback loop inherent in impinging jet flows. In these studies, the effectiveness of the control was found to be strongly dependent on a number of geometric and flow parameters, such as the impingement plane distance, microjet orientation and jet operating conditions. In this paper, the effects of some of these parameters that appear to determine control efficiency are examined and some of the fundamental mechanisms behind this control approach are explored. Through comprehensive two- and three-component velocity (and vorticity) field measurements it has been clearly demonstrated that the activation of microjets leads to a local thickening of the jet shear layer, near the nozzle exit, making it more stable and less receptive to disturbances. Furthermore, microjets generate strong streamwise vorticity in the form of well-organized, counter-rotating vortex pairs. This increase in streamwise vorticity is concomitant with a reduction in the azimuthal vorticity of the primary jet. Based on these results and a simplified analysis of vorticity transport, it is suggested that the generation of these streamwise vortices is mainly a result of the redirection of the azimuthal vorticity by vorticity tilting and stretching mechanisms. The emergence of these longitudinal structures weakens the large-scale axisymmetric structures in the jet shear layer while introducing substantial three-dimensionality into the flow. Together, these factors lead to the attenuation of the feedback loop and a significant reduction of flow unsteadiness.


2021 ◽  
Vol 11 (24) ◽  
pp. 11734
Author(s):  
Branko Tomičić ◽  
Antonija Šumiga ◽  
Josip Nađ ◽  
Dunja Srpak

During transients that occur in an electric network, large currents can flow and large electromagnetic torques can be developed in electric generators. Accurate calculation of currents and magnetic fields during transients is an important element in the optimal design of generators and network parts, as well as mechanical parts of machines and other torque transmission parts. This paper describes the modeling of a sudden three-phase short-circuit on a synchronous generator using the finite element method (FEM) and the dynamic model. The model for simulations that use the FEM was built in the MagNet software package, and the dynamic model is embedded in the MATLAB/Simulink software package. The dynamic simulation model of a part of a network with two identical generators, represented by equivalent parameters, was developed. The results obtained after the simulation of a sudden three-phase fault in the generators by both methods are presented, including three-phase voltages, three-phase currents, machine speeds, excitation voltages, and mechanical power. In particular, the short-circuit current in the phase with the highest peak value was analyzed to determine the accuracy of the equivalent parameters used in the dynamic model. Finally, the results of these two calculation methods are compared, and recommendations are presented for the application of different modeling methods.


2020 ◽  
Vol 5 (2) ◽  
pp. 561-575
Author(s):  
Behnam Nouri ◽  
Ömer Göksu ◽  
Vahan Gevorgian ◽  
Poul Ejnar Sørensen

Abstract. The electrical test and assessment of wind turbines go hand in hand with standards and network connection requirements. In this paper, the generic structure of advanced electrical test benches, including grid emulator or controllable grid interface, wind torque emulator, and device under test, is proposed to harmonize state-of-the-art test sites. On the other hand, modern wind turbines are under development towards new features, concerning grid-forming, black-start, and frequency support capabilities as well as harmonic stability and control interaction considerations, to secure the robustness and stability of renewable-energy-based power systems. Therefore, it is necessary to develop new and revised test standards and methodologies to address the new features of wind turbines. This paper proposes a generic test structure within two main groups, including open-loop and closed-loop tests. The open-loop tests include the IEC 61400-21-1 standard tests as well as the additional proposed test options for the new capabilities of wind turbines, which replicate grid connection compliance tests using open-loop references for the grid emulator. In addition, the closed-loop tests evaluate the device under test as part of a virtual wind power plant and perform real-time simulations considering the grid dynamics. The closed-loop tests concern grid connection topologies consisting of AC and HVDC, as well as different electrical characteristics, including impedance, short-circuit ratio, inertia, and background harmonics. The proposed tests can be implemented using available advanced test benches by adjusting their control systems. The characteristics of a real power system can be emulated by a grid emulator coupled with real-time digital simulator systems through a high-bandwidth power-hardware-in-the-loop interface.


2019 ◽  
Vol 11 (3) ◽  
pp. 309-331
Author(s):  
Assist. Prof. Dr. Inaam I. ALI ◽  
Mohanad Sh. Tarad AL-AASAM

Preliminary studies on Iraqi power system show a significant increase in the short circuit level at some of the grid substations and some power stations. This increasing results from the growth of the power generation and transmission systems in size and complexity. Islanding or splitting is dividing the power system into several islands inorder to reduce short circuit levels and avoiding blackouts. The main islanding problem is determining the location of proper splitting points and load balance and satisfaction of transmission capacity constraints for each islands.This paper mainly introduces new proposed splitting strategies of large-scale power systems by using (PSS™E version 30.3 PACKAGE PROGRAME), such that, make re-interconnection of 400KV super high voltage substation based on three-phase load flow to be minimum flow at splitting point and infeed fault current details method to control short circuit levels in Iraq power system without islanding the power system into isolated islands. Controlled islanding or splitting scheme is frequently considered as the final solution to avoid blackouts of power system.Simulation IEEE-25 bus and Iraqi power system used as the test systems for this method. Furthermore, simulation results show significant effectiveness on reducing short circuit levels with same time give stable splitting islands with same frequency for preventing the system blackouts.


2021 ◽  
Vol 12 (1) ◽  
pp. 13-21
Author(s):  
Diego Alberto Bravo Montenegro ◽  
Carlos Felipe Rengifo ◽  
Cristian Giron ◽  
Jhon Palechor

The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman filter is better than recursive least squares. A linear model of the machine is used in order to considerate the currents and their derivatives as the system inputs while the three-phase voltage signals are the outputs. Furthermore two experiments with simulated and measured data were carried out, three operating scenarios and two variations of the algorithms respectively were considered. Despite the great similarity and good performance of both methods, it was found that Kalman filter slightly exceeded least squares due to the fact that it presented smaller oscillations in the estimated value of the parameters for any operating condition.


Sign in / Sign up

Export Citation Format

Share Document