scholarly journals A practical solution to pseudoreplication bias in single-cell studies

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kip D. Zimmerman ◽  
Mark A. Espeland ◽  
Carl D. Langefeld

AbstractCells from the same individual share common genetic and environmental backgrounds and are not statistically independent; therefore, they are subsamples or pseudoreplicates. Thus, single-cell data have a hierarchical structure that many current single-cell methods do not address, leading to biased inference, highly inflated type 1 error rates, and reduced robustness and reproducibility. This includes methods that use a batch effect correction for individual as a means of accounting for within-sample correlation. Here, we document this dependence across a range of cell types and show that pseudo-bulk aggregation methods are conservative and underpowered relative to mixed models. To compute differential expression within a specific cell type across treatment groups, we propose applying generalized linear mixed models with a random effect for individual, to properly account for both zero inflation and the correlation structure among measures from cells within an individual. Finally, we provide power estimates across a range of experimental conditions to assist researchers in designing appropriately powered studies.

Author(s):  
Kip D. Zimmerman ◽  
Mark A. Espeland ◽  
Carl D. Langefeld

AbstractCells from the same individual share a common genetic and environmental background and are not independent, therefore they are subsamples or pseudoreplicates. Thus, single-cell data have a hierarchical structure that many current single-cell methods do not address, leading to biased inference, highly inflated type 1 error rates, and reduced robustness and reproducibility. This includes methods that use a batch effect correction for individual as a means of accounting for within sample correlation. Here, we document this dependence across a range of cell types and show that ‘pseudo-bulk’ aggregation methods are overly conservative and underpowered relative to mixed models. We propose applying two-part hurdle generalized linear mixed models with a random effect for individual to properly account for both zero inflation and the correlation structure among measures from cells within an individual. Finally, we provide power estimates across a range of experimental conditions to assist researchers in designing appropriately powered studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Deepa Bhartiya

AbstractLife-long tissue homeostasis of adult tissues is supposedly maintained by the resident stem cells. These stem cells are quiescent in nature and rarely divide to self-renew and give rise to tissue-specific “progenitors” (lineage-restricted and tissue-committed) which divide rapidly and differentiate into tissue-specific cell types. However, it has proved difficult to isolate these quiescent stem cells as a physical entity. Recent single-cell RNAseq studies on several adult tissues including ovary, prostate, and cardiac tissues have not been able to detect stem cells. Thus, it has been postulated that adult cells dedifferentiate to stem-like state to ensure regeneration and can be defined as cells capable to replace lost cells through mitosis. This idea challenges basic paradigm of development biology regarding plasticity that a cell enters point of no return once it initiates differentiation. The underlying reason for this dilemma is that we are putting stem cells and somatic cells together while processing for various studies. Stem cells and adult mature cell types are distinct entities; stem cells are quiescent, small in size, and with minimal organelles whereas the mature cells are metabolically active and have multiple organelles lying in abundant cytoplasm. As a result, they do not pellet down together when centrifuged at 100–350g. At this speed, mature cells get collected but stem cells remain buoyant and can be pelleted by centrifuging at 1000g. Thus, inability to detect stem cells in recently published single-cell RNAseq studies is because the stem cells were unknowingly discarded while processing and were never subjected to RNAseq. This needs to be kept in mind before proposing to redefine adult stem cells.


2019 ◽  
Vol 2 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Jinchu Vijay ◽  
Marie-Frédérique Gauthier ◽  
Rebecca L. Biswell ◽  
Daniel A. Louiselle ◽  
Jeffrey J. Johnston ◽  
...  

2020 ◽  
Author(s):  
Jeff Miller

Contrary to the warning of Miller (1988), Rousselet and Wilcox (2020) argued that it is better to summarize each participant’s single-trial reaction times (RTs) in a given condition with the median than with the mean when comparing the central tendencies of RT distributions across experimental conditions. They acknowledged that median RTs can produce inflated Type I error rates when conditions differ in the number of trials tested, consistent with Miller’s warning, but they showed that the bias responsible for this error rate inflation could be eliminated with a bootstrap bias correction technique. The present simulations extend their analysis by examining the power of bias-corrected medians to detect true experimental effects and by comparing this power with the power of analyses using means and regular medians. Unfortunately, although bias-corrected medians solve the problem of inflated Type I error rates, their power is lower than that of means or regular medians in many realistic situations. In addition, even when conditions do not differ in the number of trials tested, the power of tests (e.g., t-tests) is generally lower using medians rather than means as the summary measures. Thus, the present simulations demonstrate that summary means will often provide the most powerful test for differences between conditions, and they show what aspects of the RT distributions determine the size of the power advantage for means.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Prashant Rajbhandari ◽  
Douglas Arneson ◽  
Sydney K Hart ◽  
In Sook Ahn ◽  
Graciel Diamante ◽  
...  

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yehuda Schlesinger ◽  
Oshri Yosefov-Levi ◽  
Dror Kolodkin-Gal ◽  
Roy Zvi Granit ◽  
Luriano Peters ◽  
...  

Abstract Acinar metaplasia is an initial step in a series of events that can lead to pancreatic cancer. Here we perform single-cell RNA-sequencing of mouse pancreas during the progression from preinvasive stages to tumor formation. Using a reporter gene, we identify metaplastic cells that originated from acinar cells and express two transcription factors, Onecut2 and Foxq1. Further analyses of metaplastic acinar cell heterogeneity define six acinar metaplastic cell types and states, including stomach-specific cell types. Localization of metaplastic cell types and mixture of different metaplastic cell types in the same pre-malignant lesion is shown. Finally, single-cell transcriptome analyses of tumor-associated stromal, immune, endothelial and fibroblast cells identify signals that may support tumor development, as well as the recruitment and education of immune cells. Our findings are consistent with the early, premalignant formation of an immunosuppressive environment mediated by interactions between acinar metaplastic cells and other cells in the microenvironment.


2019 ◽  
Vol 30 (11) ◽  
pp. 2159-2176 ◽  
Author(s):  
Zhenyuan Yu ◽  
Jinling Liao ◽  
Yang Chen ◽  
Chunlin Zou ◽  
Haiying Zhang ◽  
...  

BackgroundHaving a comprehensive map of the cellular anatomy of the normal human bladder is vital to understanding the cellular origins of benign bladder disease and bladder cancer.MethodsWe used single-cell RNA sequencing (scRNA-seq) of 12,423 cells from healthy human bladder tissue samples taken from patients with bladder cancer and 12,884 cells from mouse bladders to classify bladder cell types and their underlying functions.ResultsWe created a single-cell transcriptomic map of human and mouse bladders, including 16 clusters of human bladder cells and 15 clusters of mouse bladder cells. The homology and heterogeneity of human and mouse bladder cell types were compared and both conservative and heterogeneous aspects of human and mouse bladder evolution were identified. We also discovered two novel types of human bladder cells. One type is ADRA2A+ and HRH2+ interstitial cells which may be associated with nerve conduction and allergic reactions. The other type is TNNT1+ epithelial cells that may be involved with bladder emptying. We verify these TNNT1+ epithelial cells also occur in rat and mouse bladders.ConclusionsThis transcriptomic map provides a resource for studying bladder cell types, specific cell markers, signaling receptors, and genes that will help us to learn more about the relationship between bladder cell types and diseases.


2019 ◽  
Author(s):  
Arnav Moudgil ◽  
Michael N. Wilkinson ◽  
Xuhua Chen ◽  
June He ◽  
Alex J. Cammack ◽  
...  

AbstractIn situ measurements of transcription factor (TF) binding are confounded by cellular heterogeneity and represent averaged profiles in complex tissues. Single cell RNA-seq (scRNA-seq) is capable of resolving different cell types based on gene expression profiles, but no technology exists to directly link specific cell types to the binding pattern of TFs in those cell types. Here, we present self-reporting transposons (SRTs) and their use in single cell calling cards (scCC), a novel assay for simultaneously capturing gene expression profiles and mapping TF binding sites in single cells. First, we show how the genomic locations of SRTs can be recovered from mRNA. Next, we demonstrate that SRTs deposited by the piggyBac transposase can be used to map the genome-wide localization of the TFs SP1, through a direct fusion of the two proteins, and BRD4, through its native affinity for piggyBac. We then present the scCC method, which maps SRTs from scRNA-seq libraries, thus enabling concomitant identification of cell types and TF binding sites in those same cells. As a proof-of-concept, we show recovery of cell type-specific BRD4 and SP1 binding sites from cultured cells. Finally, we map Brd4 binding sites in the mouse cortex at single cell resolution, thus establishing a new technique for studying TF biology in situ.


2019 ◽  
Author(s):  
Pawel F. Przytycki ◽  
Katherine S. Pollard

Single-cell and bulk genomics assays have complementary strengths and weaknesses, and alone neither strategy can fully capture regulatory elements across the diversity of cells in complex tissues. We present CellWalker, a method that integrates single-cell open chromatin (scATAC-seq) data with gene expression (RNA-seq) and other data types using a network model that simultaneously improves cell labeling in noisy scATAC-seq and annotates cell-type specific regulatory elements in bulk data. We demonstrate CellWalker’s robustness to sparse annotations and noise using simulations and combined RNA-seq and ATAC-seq in individual cells. We then apply CellWalker to the developing brain. We identify cells transitioning between transcriptional states, resolve enhancers to specific cell types, and observe that autism and other neurological traits can be mapped to specific cell types through their enhancers.


NAR Cancer ◽  
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Xiang Cui ◽  
Fei Qin ◽  
Xuanxuan Yu ◽  
Feifei Xiao ◽  
Guoshuai Cai

Abstract Tumor tissues are heterogeneous with different cell types in tumor microenvironment, which play an important role in tumorigenesis and tumor progression. Several computational algorithms and tools have been developed to infer the cell composition from bulk transcriptome profiles. However, they ignore the tissue specificity and thus a new resource for tissue-specific cell transcriptomic reference is needed for inferring cell composition in tumor microenvironment and exploring their association with clinical outcomes and tumor omics. In this study, we developed SCISSOR™ (https://thecailab.com/scissor/), an online open resource to fulfill that demand by integrating five orthogonal omics data of >6031 large-scale bulk samples, patient clinical outcomes and 451 917 high-granularity tissue-specific single-cell transcriptomic profiles of 16 cancer types. SCISSOR™ provides five major analysis modules that enable flexible modeling with adjustable parameters and dynamic visualization approaches. SCISSOR™ is valuable as a new resource for promoting tumor heterogeneity and tumor–tumor microenvironment cell interaction research, by delineating cells in the tissue-specific tumor microenvironment and characterizing their associations with tumor omics and clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document