scholarly journals Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism

2021 ◽  
Author(s):  
Eduardo Pulgar ◽  
Cornelia Schwayer ◽  
Néstor Guerrero ◽  
Loreto López ◽  
Susana Márquez ◽  
...  

AbstractThe developmental strategies used by progenitor cells to endure a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here we uncovered a progenitor cell allocation mechanism that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the surface epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-term apical contacts that enable the epithelial layer to pull a subset of progenitors along their way towards the vegetal pole. The remaining delaminated progenitors follow apically-attached progenitors’ movement by a co-attraction mechanism, avoiding sequestration by the adjacent endoderm, ensuring their fate and collective allocation at the differentiation site. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development.Impact StatementIncomplete delamination serves as a cellular platform for coordinated tissue movements during development, guiding newly formed progenitor cell groups to the differentiation site.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Eduardo Pulgar ◽  
Cornelia Schwayer ◽  
Néstor Guerrero ◽  
Loreto López ◽  
Susana Márquez ◽  
...  

The developmental strategies used by progenitor cells to allow a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here, we uncovered a mechanism of progenitor cell allocation that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the superficial epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-lasting apical contacts that enable the epithelial layer to pull a subset of progenitors on their way to the vegetal pole. The remaining delaminated cells follow the movement of apically attached progenitors by a protrusion-dependent cell-cell contact mechanism, avoiding sequestration by the adjacent endoderm, ensuring their collective fate and allocation at the site of differentiation. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development.


2020 ◽  
Author(s):  
Brya G Matthews ◽  
Francesca V Sbrana ◽  
Sanja Novak ◽  
Jessica L. Funnell ◽  
Ye Cao ◽  
...  

AbstractThe periosteum is the major source of cells involved in fracture healing. We sought to characterize differences in progenitor cell populations between periosteum and other bone compartments, and identify periosteal cells involved in fracture healing. The periosteum is highly enriched for progenitor cells, including Sca1+ cells, CFU-F and label-retaining cells. Lineage tracing with αSMACreER identifies periosteal cells that contribute to >80% of osteoblasts and ~40% of chondrocytes following fracture. A subset of αSMA+ cells are quiescent long-term injury-responsive progenitors. Ablation of αSMA+ cells impairs fracture callus formation. In addition, committed osteoblast-lineage cells contributed around 10% of osteoblasts, but no chondrocytes in fracture calluses. Most periosteal progenitors, particularly those that form osteoblasts, can be targeted by αSMACreER. We have demonstrated that the periosteum is highly enriched for skeletal stem and progenitor cells and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.


Blood ◽  
2010 ◽  
Vol 115 (22) ◽  
pp. 4367-4376 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

Abstract Previously, we have shown that overexpression of an activated mutant of signal transducer and activator of transcription-5 (STAT5) induces erythropoiesis, impaired myelopoiesis, and an increase in long-term proliferation of human hematopoietic stem/progenitor cells. Because GATA1 is a key transcription factor involved in erythropoiesis, the involvement of GATA1 in STAT5-induced phenotypes was studied by shRNA-mediated knockdown of GATA1. CD34+ cord blood cells were double transduced with a conditionally active STAT5 mutant and a lentiviral vector expressing a short hairpin against GATA1. Erythropoiesis was completely abolished in the absence of GATA1, indicating that STAT5-induced erythropoiesis is GATA1-dependent. Furthermore, the impaired myelopoiesis in STAT5-transduced cells was restored by GATA1 knockdown. Interestingly, early cobblestone formation was only modestly affected, and long-term growth of STAT5-positive cells was increased in the absence of GATA1, whereby high progenitor numbers were maintained. Thus, GATA1 down-regulation allowed the dissection of STAT5-induced differentiation phenotypes from the effects on long-term expansion of stem/progenitor cells. Gene expression profiling allowed the identification of GATA1-dependent and GATA1-independent STAT5 target genes, and these studies revealed that several proliferation-related genes were up-regulated by STAT5 independent of GATA1, whereas several erythroid differentiation-related genes were found to be GATA1 as well as STAT5 dependent.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1498-1498
Author(s):  
Heather A Himburg ◽  
Pamela Daher ◽  
Sarah Kristen Meadows ◽  
J. Lauren Russell ◽  
Phuong Doan ◽  
...  

Abstract Abstract 1498 Poster Board I-521 Significant progress has been made toward delineating the intrinsic and extrinsic signaling pathways that regulate hematopoietic stem cell (HSC) self-renewal. However, much less is known regarding the process of HSC regeneration or the extrinsic signals that regulate hematopoietic reconstitution following stress or injury. Elucidation of the microenvironmental signals which promote HSC regeneration in vivo would have important implications for the treatment of patients undergoing radiation therapy, chemotherapy and stem cell transplantation. We recently reported that pleiotrophin, a soluble heparin-binding growth factor, induced a 10-fold expansion of murine long-term repopulating HSCs in short term culture (Himburg et al. Blood (ASH Annual Meeting Abstracts), Nov 2008; 112: 78). Based on this observation, we hypothesized that PTN might also be a regenerative growth factor for HSCs. Here we tested the effect of systemic administration of PTN to non-irradiated and irradiated C57Bl6 mice to determine if PTN could promote HSC regeneration in vivo. C57Bl6 mice were irradiated with 700 cGy total body irradiation (TBI) followed by intraperitoneal administration of 2 μg PTN or saline x 7 days, followed by analysis of BM stem and progenitor cell content. Saline-treated mice demonstrated significant reductions in total BM cells, BM c-kit+sca-1+lin- (KSL) cells, colony forming cells (CFCs) and long term culture-initiating cells (LTC-ICs) compared to non-irradiated control mice. In contrast, PTN-treated mice demonstrated a 2.3-fold increase in total BM cells (p=0.03), a 5.6-fold increase in BM KSL stem/progenitor cells (p=0.04), a 2.9-fold increase in BM CFCs (p=0.004) and an 11-fold increase in LTC-ICs (p=0.03) compared to saline-treated mice. Moreover, competitive repopulating transplantation assays demonstrated that BM from PTN-treated, irradiated mice contained 5-fold increased competitive repopulating units (CRUs) compared to saline-treated, irradiated mice (p=0.04). Taken together, these data demonstrate that the administration of PTN induces BM HSC and progenitor cell regeneration in vivo following injury. Comparable increases in total BM cells, BM KSL cells and BM CFCs were also observed in PTN-treated mice compared to saline-treated controls following 300 cGy TBI, demonstrating that PTN is a potent growth factor for hematopoietic stem/progenitor cells in vivo at less than ablative doses of TBI. In order to determine whether PTN acted directly on BM HSCs to induce their proliferation and expansion in vivo, we exposed mice to BrDU in their drinking water x 7 days and compared the response to saline treatment versus PTN treatment. PTN-treated mice demonstrated a significant increase in BrDU+ BM KSL cells compared to saline-treated controls (p=0.04) and cell cycle analysis confirmed a significant increase in BM KSL cells in S phase in the PTN-treatment group compared to saline-treated controls (p=0.04). These data indicate that PTN serves as a soluble growth factor for BM HSCs and induces their proliferation and expansion in vivo while preserving their repopulating capacity. These results suggest that PTN has therapeutic potential as a novel growth factor to accelerate hematopoietic reconstitution in patients undergoing myelosuppressive radiotherapy or chemotherapy. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 62 (suppl 1) ◽  
pp. 10-15 ◽  
Author(s):  
Fernando Barroso Duarte ◽  
Benedito de Pina Almeida Prado ◽  
Garles Miller Matias Vieira ◽  
Luciano J. Costa

SUMMARY Selected patients with certain hematological malignancies and solid tumors have the potential to achieve long-term survival with autologous hematopoietic progenitor cell transplant. The collection of these cells in peripheral blood avoids multiple bone marrow aspirations, results in faster engraftment and allows treatment of patients with infection, fibrosis, or bone marrow hypocellularity. However, for the procedure to be successful, it is essential to mobilize a sufficient number of progenitor cells from the bone marrow into the blood circulation. Therefore, a group of Brazilian experts met in order to develop recommendations for mobilization strategies adapted to the reality of the Brazilian national health system, which could help minimize the risk of failure, reduce toxicity and improve the allocation of financial resources.


Author(s):  
Yanbin Zhang ◽  
Yiqiang Hu ◽  
Wentian Wang ◽  
Zijun Guo ◽  
Fan Yang ◽  
...  

Intervertebral disk (IVD) degeneration is one of the most common musculoskeletal disease. Current clinical treatment paradigms for IVD degeneration cannot completely restore the structural and biomechanical functions of the IVD. Bio-therapeutic techniques focused on progenitor/stem cells, especially IVD progenitor cells, provide promising options for the treatment of IVD degeneration. Endogenous repair is an important self-repair mechanism in IVD that can allow the IVD to maintain a long-term homeostasis. The progenitor cells within IVD play a significant role in IVD endogenous repair. Improving the adverse microenvironment in degenerative IVD and promoting progenitor cell migration might be important strategies for implementation of the modulation of endogenous repair of IVD. Here, we not only reviewed the research status of treatment of degenerative IVD based on IVD progenitor cells, but also emphasized the concept of endogenous repair of IVD and discussed the potential new research direction of IVD endogenous repair.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1960-1967 ◽  
Author(s):  
S Neben ◽  
K Marcus ◽  
P Mauch

Committed progenitor cells and primitive stem cells mediate early and sustained engraftment, respectively, after lethal irradiation and stem cell transplantation. Peripheral blood stem cells (PBSC) from unstimulated mice are deficient in both cell types. To study techniques to mobilize both progenitor cells and primitive stem cells from the marrow to the blood, we collected peripheral blood from C57BL/6 mice 6 to 7 days after a single dose of cyclophosphamide (CY; 200 mg/kg intraperitoneally), after recombinant human granulocyte colony- stimulating factor (rhG-CSF) (250 micrograms/kg/d twice per day subcutaneously for 4 days), or after CY followed by G-CSF. Significant increases in white blood cell counts (1.6- to 2.7-fold) and circulating day 8 colony-forming unit spleen (CFU-S) (11- to 36-fold) were seen with all three mobilization methods compared with unstimulated control mice. Transplantation of mobilized blood stem cells into lethally irradiated hosts decreased the time to erythroid engraftment. Blood stem cells were analyzed for primitive stem cell content by Rs, an assay for CFU-S self-renewal, and competitive repopulation index (CRI), an assay of long-term repopulating ability. The primitive stem cell content of unstimulated blood was clearly deficient, but was significantly increased following mobilization, approaching normal bone marrow levels. These results were confirmed by an in vitro limiting dilution long-term culture assay that measures the frequency of progenitor cells and primitive stem cells. Mobilization following CY + G-CSF was accompanied by a marked loss of both progenitor cells and primitive stem cells in the marrow. In contrast, following G-CSF alone the progenitor cell and primitive stem cell content of the marrow was unchanged. Stem cell mobilization following CY + G-CSF was not affected by previous exposure of donors to cytosine arabinoside or cyclophosphamide, but was significantly reduced by previous exposure to busulfan. These data show that stem cell content in the blood may reach near-normal marrow levels after mobilization, the mobilization from the marrow to the blood is temporary and reversible, the specific technique used may mobilize different subpopulations of stem cells, and the type of prior chemotherapy may influence the ability to mobilize stem cells into the blood.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2341-2341 ◽  
Author(s):  
Shiri Gur-Cohen ◽  
Tomer Itkin ◽  
Aya Ludin ◽  
Orit Kollet ◽  
Karin Golan ◽  
...  

Abstract Abstract 2341 Hematopoietic stem and progenitor cell (HSPC) egress from the bone marrow (BM) to the circulation is tightly regulated and is accelerated during stress conditions. The G-protein-coupled receptor protease-activated receptor-1 (PAR-1) and its activator thrombin play an important role in coagulation following injury and bleeding. We report that a single injection of thrombin induced rapid HSPC mobilization within one hour, increasing circulating leukocytes, predominantly CFU-C and primitive Lin−/Sca-1+/c-Kit+ (SKL) progenitor cells. This rapid mobilization was preceded by a dramatic decrease of SDF-1 (CXCL12) in BM stromal cells, including rare Nestin+ mesenchymal stem cells (MSC) which functionally express PAR-1 and release SDF-1. Thrombin injection also increased expression of PAR-1 and CXCR4 by BM HSPC. These results suggest involvement of the coagulation cascade of thrombin & PAR-1 in rapid SDF-1 secretion from niche supporting BM stromal cells as part of host defense and repair mechanisms. Administration of a PAR-1 specific antagonist (SCH79797) upregulated BM SDF-1 levels and significantly reduced the amounts of circulating CFU-C and primitive SKL progenitor cells. In vitro stimulation of BM mononuclear cells with thrombin for 1 hour led to increased CXCR4 expression by Lin−/c-Kit+ progenitors, accompanied by enhanced spontaneous and SDF-1 induced migration. Of note, specific PAR-1 inhibition in vitro significantly reduced SDF-1-directed migration of Lin-/c-Kit+ progenitors. Mechanistically, we found that thrombin - activated PAR-1 induced the downstream p38 MAPK and eNOS (nitric oxide synthase) signaling pathways. Long term repopulating hematopoietic stem cells (HSC) in murine BM highly express endothelial protein C receptor (EPCRhigh) (Balazs & Mulligan et al Blood 2006; Kent & Eaves et al Blood 2009). EPCR is expressed primarily on endothelial cells (EC) and has anti coagulation and anti inflammatory roles. Surface EPCR expression on EC is downregulated by many factors, including PAR-1 activation by thrombin, a process which is termed shedding and is not fully understood. Importantly, we found that over 90% of BM CD45+/EPCRhigh long-term HSC express PAR-1 and that circulating primitive HSPC in the blood and spleen lack EPCRhigh expression. In addition, in-vivo thrombin administration downregulated EPCR from BM HSC via eNOS signaling, thus allowing the release of stem cells from their BM microenvironment anchorage to the circulation. Correspondingly, in eNOS deficient mice, thrombin failed to induce PAR-1 upregulation, EPCR shedding, and HSPC mobilization. Recently, we reported that the antioxidant NAC inhibits G-CSF induced mobilization (Tesio & Lapidot et al Blood 2011). Co-administration of G-CSF with NAC prevented PAR-1 upregulation, concomitantly with reduced HSPC mobilization and increased levels of EPCRhigh HSC in the BM. Treatment of PAR-1 antagonist with G-CSF inhibited PAR-1 and CXCR4 upregulation on BM leukocytes and immature Lin−/c-Kit+ cells accompanied by increased levels of BM EPCRhigh HSC and reduced HSPC mobilization. Tissue factor (TF) is the main initiator of the coagulation system via the formation of an enzymatic “prothrombinase complex” that converts prothrombin to active thrombin. Unexpectedly, we found a unique structure of cell clusters expressing TF, located preferentially in the trabecular-rich area of the femoral metaphysis in murine bone tips, a region highly exposed to osteoclast/osteoblast bone remodeling. In vitro, immature osteoclasts exhibited increased TF expression in cell fusion areas, suggesting that in vivo osteoclast maturation activates the coagulation thrombin/PAR-1 axis of HSPC migration to the circulation. Finally, mimicking bacterial infection a single injection of Lipopolysaccharide (LPS), rapidly and systemically upregulated TF in the murine BM. LPS treatment prompted an increase in thrombin generation and subsequently HSPC mobilization, which was blocked by the PAR-1 antagonist. In conclusion, our study reveals a new role for the coagulation signaling axis, which acts on both hematopoietic and stromal BM cells to regulate steady state HSPC egress and enhanced mobilization from the BM. This thrombin/PAR-1 signaling cascade involves SDF-1/CXCR4 interactions, immature osteoclast TF activity, Nestin+/PAR-1+ MSC secretion of SDF-1 and EPCR shedding from hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Beibei Zhang ◽  
Xiaoying Wu ◽  
Jing Li ◽  
An Ning ◽  
Bo Zhang ◽  
...  

Abstract Background: Hepatic schistosomiasis, a chronic liver injury induced by long-term Schistosoma japonicum (S. japonicum) infection, is characterized by egg granulomas and fibrotic pathology. Hepatic progenitor cells (HPCs), which are nearly absent and quiescent in normal liver, play vital roles in chronic and severe liver injury. But their role in the progression of liver injury during infection remained unknown.Methods: In this study, the hepatic egg granulomas, fibrosis and proliferation of HPCs were analyzed in S. japonicum infection mice model at different infection stages. For validating the role of HPCs in hepatic injury, TNF­related weak inducer of apoptosis (TWEAK) and TWEAK blocking antibody were used to manipulate the proliferation of HPCs. Histologic pathology and the expression of IL-33 were examined. Results: We found that the proliferation of HPCs paralleled with inflammatory granulomas and fibrosis formation. Promoting HPCs expansion promote the liver regeneration and inhibit the hepatocytes injury, the inflammatory eggs granulomas and the deposition of fibrotic collagen. Interestingly, the expression of IL-33 decreased when HPCs were manipulated to proliferate. Thus, IL-33 might be involved in the liver repair dominated by HPCs. Conclusions: Collectively, our data uncovered a protective role of HPCs in hepatic schistosomiasis in an IL-33 related manner, which might provide a promising progenitor cell therapy for hepatic schistosomiasis.


Sign in / Sign up

Export Citation Format

Share Document